МЕТРИЧЕСКОЕ СТИХОСЛОЖЕНИЕ,

квантитативное стихосложение, стихосложение, основанное на упорядоченном чередовании долгих и кратких слогов. Употребительно в языках, в к-рых долгота и краткость гласных имеют смыслоразличит. значение. Наибольшее развитие получило в араб, стихосложении (см. Аруз) и в античном. В антич. М. с. единицей долготы в стихе служит доля - мора; краткий слог (w) считается равным одной море, долгий слог (-) - двум. Повторяющаяся группа долгих и кратких слогов называется стопой. Важнейшие стопы: трёхдольные (трёхмерные) - ямб (w -), хорей, или трохей (- w), трибрахий (w w w); четырёхдольные - спондей (- -), дактиль (- w w ), анапест (w w -); пяти-дольные - бакхий с антибакхием (w - -, - - w), амфимакр (- w -) и 4 пеона (- w w w, w - w w, w w - w, www -); шести дольные - молосс (- - -), хориямб (- w w -), анти-спаст (w - - w) и 2 ионика (w w --, - - w w ); семидольные - 4 эпитрита (w - - -, - w - -, - - w -, - - - w). В каждой стопе различается сильное место - арсис, или икт (обычно долгий слог), и слабое место -т е с и с (обычно краткие слоги); сильные места выделяются при произношении особым ритмич. ударением, фонетич. природа к-рого не совсем ясна. Короткие трёхдольные стопы (иногда и четырёхдольные) обычно объединяются в пары -диподии, где одна из стоп несёт усиленное ритмич. ударение. Стих, как правило, состоит из одинаковых стоп и носит соответствующее название: дактилич. гекзаметр (6 стоп), ямбич. триметр (3 диподии) и т. п. Однако в таком стихе рав-нодольные стопы могут заменять друг друга: так, в дактилич. гекзаметре стопа дактиля (-w w) может заменяться стопой спондея (- -). При перемене темпа произнесения могут заменять друг друга даже неравнодольные стопы: так, в ямбич. триметре ямб (w -) может заменяться убыстрённым спондеем (- -) и даже убыстрённым дактилем и анапестом (- w w, w w -). Всё это создаёт чрезвычайное богатство метрич. вариаций в пределах постоянного такта -стопы. Метрич. разнообразие стиха усиливается использованием передвижной цезуры - словораздела, к-рый рассекает одну из средних стоп и делит стих на 2 полустишия - одно с нисходящим ритмом (- w w ...), другое с восходящим (w w _...).

Такие стихи употреблялись в эпосе и драме. В лирике наряду с ними употреблялись более сложно построенные стихи с переменными стопами - логаэды: здесь периодичность повторения стоп проявляется не в пределах одного стиха, а в пределах группы стихов - строфы (алкеева строфа, сапфическая строфа и пр.), подчас очень большого объёма и сложности (напр., в хоровой лирике у др.-греч. поэта Пиндара). М. с. в антич. лит-ре зародилось в древнейшие времена, когда поэзия была ещё нераздельна с музыкой; получила теоретич. разработку, когда стих отделился от пения; держалась, пока в лат. и греч. языках различались долгота и краткость слогов, а потом в ср. века уступила место силлабич. и тонич. стихосложению, хотя по традиции греч. и лат. стихи в системе М. с. писались ещё долго. Подлинное звучание антич. стихов в тонич. стихосложении невоспроизводимо; в т. н. "переводах размером подлинника" принятс передавать ударными слогами - ритмич. ударения, а безударными слогами -слабые места стоп.

Лит.: Денисов Я., Основания метрики у древних греков и римлян, М., 1888; С г u s i u s F., Romische Metrik, 2 Aufl., Munch., 1955; Snell В., Griechische Metrik, 2 Aufl., [H. 1], Gott., 1957; Metryka grecka i lacinska, pod red. M. Dluskiej i W. Strzeleckiego.Wr., 1959. М. Л. Гаспаров.

МЕТРИЯ (от греч. metreo - измеряю), часть сложных слов, соответствующая по значению слову "измерение" (напр., геометрия, фотометрия).

МЕТРО, то же, что метрополитен.

МЕТРОВЫЕ ВОЛНЫ, радиоволны с длиной волны от 1 до 10 ж [частоты (3-30)-107 гц]. При наземной радиосвязи распространяются на небольшие расстояния как прямые и земные радиоволны (см. Распространение радиоволн). На большие расстояния они могут распространяться в виде тропосферных волн за счёт рефракции или рассеяния на неоднородностях и как ионосферные волны за счёт отражения от метеорных следов (в годы максимума солнечной активности - вследствие отражения от ионосферы). Применяются для связи с космич. объектами, т. к. проходят через ионосферу Земли. Прохождение М. в. через атмосферу Земли сопровождается рефракцией, частичным поглощением и вращением плоскости поляризации.

Лит. см. при ст. Распространение радиоволн

МЕТРОЛОГИИ ИНСТИТУТ Всесоюзный научно-исследовательский им. Д. И. Менделеева (ВНИИМ), находится в Ленинграде. Осн. в 1893 как Гл. палата мер и весов взамен существовавшего с 1842 Депо образцовых мер и весов. Организатором и первым управляющим был Д. И. Менделеев. Основной профиль - исследования по метрологии, создание и хранение гос. эталонов, разработка методов и средств измерений высшей точности и средств поверки. В 1931-34 назывался Всесоюзным ин-том метрологии и стандартизации (ВИМС), в 1934 получил наст, наименование. В 1945 ин-ту присвоено имя Д. И. Менделеева, в 1971 награждён орденом Трудового Красного Знамени.

Ин-т подготовил ряд действовавших в России и в СССР положений о мерах и весах, активно участвовал в проведении метрич. реформы (1918-27), в нём разрабатывались все отечественные стандарты на единицы физических величин. Большинство государственных эталонов (для воспроизведения единиц длины, маооы, эдс, электрического сопротивления, индуктивности и др.) хранится и применяется во ВНИИМ. Лаборатории ин-та ведут исследования по общим вопросам метрологии и по след, областям измерений: механическим, электрическим, магнитным, тепловым и температурным, гидродинамическим, оптическим и световым, физико-химическим, ионизирующих излучений. В составе ин-та имеются лаборатории гос. надзора за средствами измерений, спец. конструкторское бюро и опытный з-д "Эталон". В Свердловске и Тбилиси действуют филиалы ин-та. Издаются "Труды ВНИИМ" (с 1894), являющиеся продолжением "Временника Главной палаты мер и весов".

Лит.: Сто лет государственной службы мер и весов в СССР, М.- Л., 1945; Всесоюзный научно-исследовательский институт метрологии им. Д. И. Менделеева, Л., 1967; Метрологическая служба СССР, М., 1968.

К. П. Широков.

МЕТРОЛОГИЧЕСКАЯ СЛУЖБА, сеть государственных и метрологич. органов, в задачи к-рых входит обеспечение единства измерений и единообразия средств измерений в стране.

М. с. осуществляет стандартизацию единиц физич. величин, их воспроизведение с помощью гос. эталонов, передачу размеров единиц всем применяемым в стране средствам измерений, гос. испытания новых образцов средств измерений, надзор за уже находящимися в эксплуатации средствами измерений путём их периодич. поверки и проведения ревизий, организацию гос. системы стандартных справочных данных (сбор и публикацию официальных данных о физ. константах и свойствах веществ и материалов), проведение метрологич. экспертизы стандартов, нормативно-технической и проектной документации, надзор за соблюдением стандартов и качеством выпускаемой продукции и др. метрологич. мероприятия, а также участие в работах Международных метрологических организаций.

В СССР М. с. возглавляет Гос. к-т стандартов Сов. Мин. СССР, в его не-посредств. подчинении находятся органы гос. М. с. В министерствах и ведомствах имеются ведомственные М. с., общее методич. руководство к-рыми осуществляется Госстандартом СССР.

Науч. сторону М. с. обеспечивают метрологич. ин-ты, хранящие эталоны и ведущие науч. исследования по проблемам метрологии. В СССР (на 1974) существует 11 метрологич. ин-тов и их филиалов. Старейшим из них является Всесоюзный н.-и. ин-т метрологии им. Д. И. Менделеева (см. Метрологии институт). Решение практич. задач М. с. возложено на республиканские и областные лаборатории гос. надзора за стандартами и измерит, техникой. М. с. СССР регламентируется комплексом стандартов и др. нормативно-технич. документов гос. системы обеспечения единства измерений (ГСИ).

Лит.: Метрологическая служба СССР, М., 1968; ГОСТ 8002-71. Организация и порядок проведения поверки, ревизии и экспертизы средств измерений.

К. П. Широков.

МЕТРОЛОГИЯ (от греч. metron -мера и ...логия), наука об измерениях, методах достижения их единства и требуемой точности. К осн. проблемам М. относятся: а) общая теория измерений; б) образование единиц физических величин и их систем; в) методы и средства измерений; г) методы определения точности измерений (теория погрешностей измерений)', д) основы обеспечения единства измерений и единообразия средств измерений (законодательная М.); е) создание эталонов и образцовых средств измерений; ж) методы передачи размеров единиц от эталонов образцовым и далее - рабочим средствам измерений.

Первоначально М. занималась описанием различного рода мер (линейных, вместимости, массы, времени), а также монет, применявшихся в разных странах, и соотношений между ними (см. Метрология историческая). Поворотным моментом в развитии М. стало заключение в 1875 Метрической конвенции и учреждение Международного бюро мер и весов. Совр. М. опирается на физич. эксперимент высокой ' точности, она использует достижения физики, химии и др. естеств. наук, но вместе с тем устанавливает свои специфич. законы и правила, позволяющие находить количеств, выражение свойств объектов материального мира.

Общая теория измерений окончательно ещё не сложилась, в неё входят сведения и обобщения, полученные в результате анализа и изучения измерений и их элементов: физич. величин, их единиц, средств и методов измерений, получаемых результатов измерений.

В М., как и в физике, физич. величина трактуется как свойство физич. объектов (систем), общее в качеств, отношении многим объектам, но в количеств, отношении индивидуальное для каждого объекта, т. е. как свойство, к-рое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (напр., длина, масса, плотность, темп-pa, сила, скорость). Каждый объект обладает определённой длиной, массой и т. д., для него понятие величины становится конкретным (длина стола, масса гири и т. д.). Измерять можно только конкретные величины. Для того чтобы объективно оценить величину, нужно выбрать единицу (для нек-рых величин-шкалу). Единица - это физич. величина (конкретная), числовое значение к-рой по условию принято равным 1. Шкалой величины наз. принятая по соглашению последовательность значений одноимённых величин различного размера (напр., температурная шкала, шкала твёрдости по Бринеллю). С развитием науки перешли от случайного выбора единиц отд. величин к построению систем единиц. В М. рассматриваются теоретич. аспекты связей между физич. величинами и принципы построения систем единиц, а также конкретные системы единиц.

Для достижения единства измерений (т. е. получения результатов, выраженных в узаконенных, единицах независимо от времени, места и средств измерений) должна производиться правильная градуировка и периодич. поверка всех применяемых средств измерений. Для этого необходимы эталоны единиц и парк образцовых средств измерений. М. изучает способы воспроизведения единиц с помощью эталонов и пути повышения их точности, а также методы передачи размеров единиц (методы поверки).

Большой раздел М. посвящён методам нахождения оценок погрешностей измерений, для чего используется аппарат теории вероятностей и математич. статистики, а иногда и др. разделов математики.

Законодательная М. рассматривает вопросы, связанные с достижением единства измерений и единообразия средств измерений, к-рые нуждаются в регламентации и контроле со стороны гос-ва. Для проведения в жизнь всех необходимых для этого мероприятий в странах организуются метрологические службы. В СССР гос. метрологич. служба находится в ведении Гос. к-та стандартов Сов. Мин. СССР.

Вследствие увеличения роли М. в развитии науки, техники и пром-сти в ряде стран ещё в кон. 19 в. и нач. 20 в. были созданы спец. метрологич. н.-и. ин-ты: Главная палата мер и весов в России (1893) (ныне Всесоюзный научно-исследовательский институт метрологии им. Д. И. Менделеева), Гос. физико-тех-нич. ин-т в Германии (1887), Национальная физич. лаборатория в Великобритании (1899), Национальное бюро стандартов в США (1901) и др. В 20 в. был создан ряд Международных метрологических организаций, призванных вырабатывать и принимать единые для всех стран-участниц рекомендации и постановления по рассматриваемым метрологич. вопросам.

Журналы по М.: "Измерительная техника" (1940-41, затем с 1955), ему предшествовали журналы "Поверочное дело" (1916-29), "Измерительная техника и поверочное дело" (1930-38)," Метрология и поверочное дело" (1938-39); " Metro 1о-gia"(B., с 1965); "Bulletin de 1'Organisa-tion Internationale de Metrologie Legale" (P., с I960); "Journal of Research of the National Bureau of Standards" (Wash., с 1928); "Wissenschaftliche Abhandlungen der Physikalisch-technischen Bundesan-stalt" (Braunschweig, с 1949).

Лит.: Маликов М. Ф., Основы метрологии, ч. 1, М., 1949; Маликов С. Ф. и Тюрин Н. И., Введение в метрологию, 2 изд., М., 1966; Б у р д у н Г. Д., Марков Б. Н., Основы метрологии, М., 1972; BassiereM., Gaignebet E., Metrologie generale, P., 1966; Арутюнов В. О., Содержание и основные задачи современной метрологии, "Измерительная техника", 1967, № 9; Ш и р о к о в К. П., Об основных понятиях метрологии, "Тр. метрологических ин-тов СССР", 1972, в. 130 - (190).

К. П. Широков.

МЕТРОЛОГИЯ ИСТОРИЧЕСКАЯ, вспомогательная историч. дисциплина, предметом изучения к-рой являются применявшиеся и ещё применяемые в различных странах собственные единицы длины, площади, объёма, массы и др., системы единиц (мер), а также ден. единицы в их историч. развитии.

Задача М. и. - выяснение соотношений между единицами и их выражение в современных единицах (см., напр., Английские меры), а также изучение происхождения названий единиц. М. и. необходима при изучении истории экономики и права, материальной культуры и контактов между народами, т. к. развитие систем единиц обусловлено ростом производит, сил и сопутствует расширению междунар. связей. С распространением метрической системы мер количество стран, использующих свои особые единицы, постепенно уменьшается, и в будущем задача М. и. сведётся только к изучению вышедших из употребления единиц. Историю ден. единиц наряду с М. и. изучает нумизматика.

Лит.: Петрушевский Ф. И., Общая метрология, ч. 1-2, СПБ, 1849; Б а-б е н к о И. П., Монеты, меры и весы всех стран и народов (в сравнении с русскими), СПБ, 1905; Черепнин Л. В., Русская метрология, М., 1944.

К. П. Широков.

МЕТРОНОМ (от греч. metron - мера и nomos- закон), прибор для отсчёта тактовых долей времени на слух, применяемый в целях установления точного исполнения темпа муз. произведений. Приборы типа М. начали конструироваться в 17 в. Совр. М., усовершенствованный венским мастером И. Н. Мель-целем (патент 1816), состоит из деревянного корпуса пирамидальной формы со шкалой делений, пружинного часового механизма и маятника с передвижным грузиком. Колебания маятника сопровождаются строго равномерным постукиванием. Число колебаний маятника в единицу времени зависит от местоположения грузика. Для настройки М. на необходимое число ударов в минуту грузик устанавливается против соответствующей цифры на шкале. М. применяется также при физкультурных упражнениях, в лабораторных испытаниях и др.

МЕТРОПАТИЯ (от греч. metra - матка и pathos - страдание), болезненное состояние, выражающееся в длительных маточных кровотечениях при отсутствии выраженных изменений в половых органах женщины. Кровотечения обычно наступают после задержки менструации. М. рассматривают как однофазный, патологически удлинённый менструальный цикл, т. к. при этом заболевании не существует второй фазы ни в яичнике, ни в матке, а имеется только первая фаза - фолликулиновая в яичнике и пролиферативная в матке. Наиболее часто наблюдается в период полового созревания и в климактерич. периоде. Лечение: гормонотерапия, в тяжёлых случаях - переливания крови, выскабливание слизистой оболочки матки.

МЕТРОПОЛИС (от греч. metropolis -главный город), 1) городская агломерация, сложившаяся в результате слияния неск. городов или слияния города с окрестными поселениями (см. Агломерация населённых пунктов). М.- характерная форма урбанизации в совр. бурж. странах, где возникновение и развитие М. связано с беспорядочным неконтролируемым ростом гор. территорий в условиях частной собственности на землю и частнокапиталистич. предпринимательства. Примером М. могут служить территории Большого Нью-Йорка, Токио, Лондона. Наибольшее распространение подобные агломерации получили в США, где они официально именуются Стандартными метрополитенскими ста-тистич. ареалами (СМСА). Согласно офиц. статистике, в США ок. 240 метро-политенских ареалов, в к-рых проживает 64,3% всего населения страны (напр., в М. Большого Нью-Йорка проживает св. 11,4 млн. чел., Чикаго и Лос-Анджелеса - по 6 млн. чел.). В Великобритании аналогичные агломерации чаще называют конурбациями. В бурж. М. достигают крайней остроты проблемы, связанные с кризисом капиталистич. городов -рост трущоб, преступности, неудовлетво-рит. состояние коммунальных и трансп. служб, заражение окружающей среды. Трудности решения всех этих проблем усугубляются тем, что, как правило, бурж. М. не имеет единой системы управления (напр., в р-не Большого Чикаго насчитывается более 1100 различных местных органов, действующих независимо друг от друга). См. также Мегало-полис. 2) Центральный город страны или к.-л. крупного подразделения гос. территории. Г. В. Барабашев.

МЕТРОПОЛИТЕН, метро (франц. metropolitan, букв. - столичный, от греч. metropolis - гл. город, столица), городская внеуличная железная дорога для массовых скоростных перевозок пассажиров. Название М. принято в СССР и во многих других странах; другое назв.- "подземка" (англ, underground, амер. subway, нем. Unterg-rundbahn).

Общие сведения. М. отличается большой пропускной способностью, регулярностью и высокой эксплуатац. скоростью движения поездов. Линии М. могут быть подземными (в тоннелях), наземными и надземными (на эстакадах). Подземные линии М. получили наибольшее распространение, т. к. они не нарушают исторически сложившейся планировки города, не стесняют движения гор. наземного транспорта и пешеходов, способствуют уменьшению шума и вибрации в зданиях от движения поездов. Наземные линии М., как правило, сооружают в р-нах города с относительно невысокой плотностью застройки, при расширении существующей сети М., устройстве объединённых пересадочных станций М. с пригородными жел. дорогами, на концевых участках, примыкающих к депо. Наземные участки М. должны иметь ограждение. Надземные линии на эстакадах сооружают на отд. участках, с учётом рельефа местности, гл. обр. при пересечении автомоб. и жел. дорог, водных и др. преград. Необходимость в М.-скоростном транспорте, не загромождающем уличной дорожной сети и не имеющем пересечений в одном уровне, ощущается в большинстве городов с численностью населения св. 1 млн. чел. (см. Градостроительство).

М. включает большой комплекс сооружений и устройств, из к-рых осн. являются: станции и вестибюли со служебными помещениями, эскалаторные устройства, перегонные тоннели, камеры съездов и тупики, вагонные депо с производств, цехами и бытовыми помещениями, тяговые и понижающие электрич. подстанции, тоннельные сооружения для инж. и сан.-технич. оборудования, вентиляции, водоотлива и водоснабжения.

Историческая справка. Первая вне-уличная жел. дорога дл. 3,6 км для поездов с паровой тягой была построена в Лондоне в тоннелях мелкого заложения в 1860-63 фирмой "Метрополитен рей-луэй" (Metropolitan Railway). С 1890 в Лондоне началось стр-во тоннелей глубокого заложения, а введение электрич. тяги освободило тоннели от дыма и копоти и улучшило условия эксплуатации гор. подземной линии. В 1868 в Нью-Йорке была открыта надземная (на ме-таллич. эстакадах) городская ж.-д. линия с канатной тягой (заменённой в 1871 на паровую, а в 1890 - на электрическую). Старейшими на Европейском континенте являются М. Будапешта, построенный в 1896, а также М. Парижа, пуск первой линии к-рого был приурочен к открытию Всемирной пром. выставки 1900. Впоследствии М. были построены в Мадриде, Барселоне, Афинах, Токио, Осло, Стокгольме и др. городах. Проектирование, строительство и эксплуатация линий М. нередко велись конкурирующими фирмами, вследствие чего эти линии в ряде случаев не составляли единой сети, иногда отличались шириной колеи, напряжением в контактной сети.

В крупнейших и крупных городах различных стран развитие и реконструкция существующих сетей и стр-во новых линий М. особое значение приобрели после 2-й мировой войны 1939-45. Интенсивное развитие городов часто требовало отказа от эстакад и постепенной замены наземных и надземных М. подземными. Осн. сведения о М. наиболее крупных городов мира, по данным Междунар. союза общественного транспорта, приведены в таблице.

Начало развитию метростроения в СССР было положено решением пленума ЦК ВКП(б) от 15 июня 1931 "О строительстве Московского метрополитена". Для осуществления стр-ва была создана мощная, оснащённая отечеств, техникой строит, орг-ция «Метрострой». Стр-во М. было начато в 1932. Первые линии Московского М. имени В. И. Ленина общей протяжённостью 11,6 км с 13 станциями и всем комплексом сооружений были построены за 3 года и сданы в эксплуатацию 15 мая 1935. Таких темпов сооружения М. не знала мировая практика. Дальнейшее стр-во М. в Москве ведётся непрерывно, оно не прекращалось даже в годы Великой Отечеств, войны 1941—45. Эксплуатац. длина линий М. Москвы составляет (1973) св. 148 км (в двухпутном исчислении), строит, длина — 156 км; число станций — 96. Суточный пассажиропоток достигает 4840 тыс. чел., или 35,7% от гор. пасс, перевозок. По качеству сооружений, выразительности архитектуры, технич. оснащению, эксплуатац. характеристикам и комфортабельности Московский М. значительно превосходит зарубежные М. В соответствии с Ген. планом развития Москвы, принятым ЦК КПСС и Сов. Мин. СССР в 1971 и рассчитанным на 25—30 лет, протяжённость сети Московского М. намечено довести до 320 км.

Опыт строительства Московского М. был использован при сооружении М. в др. городах СССР. 15 нояб. 1955 сдан в эксплуатацию первый участок М. в Ленинграде протяжённостью 10,8 км с 8 станциями. 6 нояб. 1960 открыто движение на первой линии Киевского М. В янв. 1966 вступил в строй М. в Тбилиси, а в 1967 — в Баку. Начато строительство гор. подземных ж. д. в Харькове и Ташкенте, изучается целесообразность сооружения М. в ряде др. городов.

Проектирование метрополитена. Растущие масштабы пром. и жилищного стр-ва в СССР, расширение границ городов, формирование групповых систем расселения, организация зон массового отдыха трудящихся требуют науч. разработки комплексных схем развития всех видов гор. транспорта и в первую очередь М. как наиболее удобного средства массовых перевозок пассажиров. Проектирование осн. направлений развития М., включая размещение станций, пересадочных узлов между линиями М. и в местах пересечения с ж. д. и узловыми пунктами уличного транспорта, ведётся на основании Ген. плана развития города и ген. схемы сети М.; последняя разрабатывается с учётом размещения зон массового приложения труда и учреждений обслуживания и отдыха, направления и величины пасс, потоков, а также необходимой взаимосвязи с др. видами гор., пригородного и магистрального пасс, транспорта.

В зависимости от характера эксплуатации сети М. проектируются с независимым (замкнутым) движением поездов по отдельным, не связанным между собой линиям (как, напр., в Москве, Ленинграде и др. городах СССР), с переходом части поездов си одной линии на другую (Лондон, Нью-Йорк) и в виде комбинированных сетей. М. удобен для пассажиров, совершающих сравнительно дальние поездки, поэтому расстояние между станциями в городах СССР, как правило, устанавливается от 1 до 2км. Ср. расстояние между станциями М. Берлина, Мадрида, Милана, Буэнос-Айреса, Торонто и нек-рых др. городов Европы и Америки составляет 500-800 м. В ряде городов (напр., в Париже, Сан-Франциско, Лос-Анджелесе) проектируются и строятся, а в Нью-Йорке эксплуатируются линии скоростного М. (метро-экспресс), на к-рых станции располагаются через 3-6 км и связываются удобными и короткими переходами ("через платформу" или др. типа) со станциями обычных линий М. Для сокращения затрат времени на передвижение пассажиров строительство скоростного М. намечается и в СССР (в Москве и Ленинграде).

Глубина заложения линий М., типы тоннельных сооружений и методы про-из-ва работ устанавливаются на основании детальных градостроительных, инженерно-геологич., технико-экономич. и др. исследований. Наиболее экономичным является сооружение линий М. мелкого заложения. Они удобнее и дешевле в эксплуатации, чем линии глубокого заложения. Пассажир затрачивает минимум времени при подходе к поездам и выходе со станции. Тоннели линий мелкого заложения сооружаются обычно на глубине 10-15 м от уровня земли. Линии М. глубокого заложения (30-50 м) прокладывают преим. в р-нах города с плотной многоэтажной застройкой и развитым подземным х-вом, а также при неблагоприятных геологич. и гидрогеологич. условиях для сооружения линий мелкого заложения. Сооружение тоннелей глубокого заложения практически не нарушает нормальной жизни города и почти не влияет на устойчивость зданий и подземных коммуникаций.

Нормируемые параметры трасс сов. М. в плане и профиле обеспечивают высокие эксплуатац. качества пути и плавность хода поездов. План линий М. определяется расположением осн. р-нов высокой концентрации пассажиров, гор. планировкой, трансп. и инж. подземными коммуникациями (автомобильные тоннели, магистральные коллекторы и др.). При мелком заложении тоннели, как правило, сооружаются вдоль осн. магистралей города. Наименьший радиус кривых, к-рый разрешается применять на главных путях М. СССР, равен 500 м, что значительно превышает соответствующие показатели зарубежных метрополитенов (Лондон - 100 м, Мадрид - 90 м, Берлин - 75 м).

При проектировании продольного профиля линии М. учитываются особенности эксплуатации подвижного состава и необходимость устройства водоотвода. Допускается наибольший уклон путей 0,040% , наименьший - 0,003% . Станции располагаются в плане на прямых участках, а в профиле линии - на возвышениях. Ширина колеи сов. М. одинакова с шир. нормальной ж.-д. колеи (1520 мм). В зарубежных М. наиболее распространена ширина колеи 1435 мм. Однако в нек-рых странах отсутствует единый стандарт на ширину колеи (в Японии, напр., приняты колеи 1067, 1372, 1435 и 2180 мм). На отд. линиях М. в Париже, Монреале, Мехико и Саппоро имеется спец. колея для поездов на пневматич. шинах (с бетонными дорожками), что обеспечивает плавность и бесшумность движения поездов и позволяет трассировать линии с увеличенными уклонами.

Рис. 2. Станция метрополитена колонного типа с увеличенным пролётом среднего зала.

Станции метрополитена. Особое положение в комплексе сооружений М. занимают станции, вестибюли и пересадочные узлы, непосредственно связанные с обслуживанием пассажиров. Наряду с выполнением своих осн. функций они должны обеспечивать безопасность пассажиров, обладать определёнными удобствами (вт. ч. максимально короткий путь от поверхности к перронным залам и в обратном направлении, чистота и оптимальная температура воздуха и др.). В местах пересечений или соприкосновений различных линий М. сооружаются пересадочные (узловые) станции. Их перронные залы соединяются лестницами и коридорами (узлы коридорного типа) или только лестницами либо эскалаторами (узлы двухъярусного - т. н. башенного типа), а иногда располагаются в одном уровне, с пересадкой "через платформу" непосредственно из вагона в вагон (узлы объединённого типа).

В СССР станции М. и переходы оборудуются эскалаторами для подъёма пассажиров на высоту более 5 м. При высоте более 7 м предусматриваются эскалаторы и для спуска пассажиров. В зарубежной практике иногда применяют подъёмники лифтового типа с кабинами вместительностью до 130 чел.

Станции мелкого заложения сооружаются гл. обр. со вскрытием поверхности. Для их перекрытия используются стоечно-балочные конструкции с 1, 2 или неск. рядами опор или сводчатые конструкции, рассчитанные на нагрузки от массы земли толщиной 1-2,5м и движущегося по поверхности уличного транспорта. Станции глубокого заложения обычно представляют собой сочетание 2, 3 или неск. тоннелей с монолитной или сборной обделкой, выдерживающей давление вышележащих пород. Обделка в каждом тоннеле состоит из замкнутых и соединённых между собой колец, образованных чугунными или железобетонными тюбингами. Эти станции подразделяются на пилонные и колонные. В пи-лонных станциях М. (рис. 1) опорами перекрытия служат массивные пилоны, образованные 2-4 или большим коли-

Рис. 1. Станция метрополитена пиленного типа с обделкой из железобетонных тюбингов.

дороже и сложнее стр-ва пилонных, но более открытое внутр. пространство колонных станций удобнее для движения массовых потоков пассажиров и облегчает их зрительную ориентацию. В основном в периферийных районах городов, где проходят наземные линии, сооружают станции в виде павильонов или с открытыми платформами, защищёнными лёгкими навесами и козырьками. Тип станции во многом зависит от конкретных условий стр-ва (особенно от гидрогеологической обстановки). Первые станции лондонского М., сооружавшиеся под проезжей частью улиц, имели сводчатые перекрытия из кирпича с вентиляц. решётками, устроенными непосредственно на тротуарах. Поездные пути располагались по центр, продольной оси станции М., по сторонам путевого полотна находились две боковые пасс, платформы (этот тип станции с узкими, шириной 1,5-3 м, боковыми платформами, простой по устройству, но недостаточно удобный для пассажиров, получил распространение в М. Зап. Европы и Америки). В дальнейшем при стр-ве в Лондоне станций М. глубокого заложения (как и при сооружении перегонных тоннелей) начали применять ограждающие конструкции кольцевого сечения из чугунных тюбингов, облицованные керамич. плиткой. Большинство станций парижского М. имеет одинаковую односводчатую конструкцию (камень, облицованный глазурованной плиткой), с центр, расположением путей и боковыми пасс, платформами. После постройки первых станций берлинского М. распространились станции М. с пасс, платформой т. н. островного типа (расположенной между путями). Преимуществами такой станции являются удобное расположение входов и выходов со стороны торцов платформы, более полное использование всей площади платформы, лёгкость ориентировки пассажиров и возможность изменения направления поездки без перехода через пути.

В целом в зарубежной практике стр-ва М., за редким исключением [напр., входы в парижский М. (металл, стекло, ок. 1900, арх. Г. Гимар, стиль модерн"); наземный вестибюль станции "Арносгров" в Лондоне (кирпич, бетон, 1932, арх. П. Адаме и др.)], преобладает утилитарный подход к архит. решению М. Большее внимание облику М., особенно станций, стали уделять лишь во 2-й пол. 20 в.; применяются новейшие конструкции, строит, и отделочные материалы, средства рекламы и визуальной информации (станции линии "Восток -
Запад" в Будапеште, первая очередь окончена в 1970, и линии "Север - Юг" в Мюнхене, 1965-71).

В СССР с начала стр-ва М. его станции создавались как пространственно протяжённый архит. комплекс монументальных сооружений большого обществ, значения. В проектировании станций Московского М. участвовали видные сов. архитекторы, в т. ч. В. Г. Гельфрейх, И. А. Фомин, А. В. Щусев, к-рые стремились не только создать комфортабельные условия для пассажиров, зрительно преодолеть угнетающее человека ощущение подземелья, но и придать каждой станции М. индивидуальный архит. облик. В архитектуре М. отразились этапы общего развития сов. архитектуры. Мн. архитекторы использовали формы и декор, заимствованные из арсенала классицистич. зодчества [напр., архит. решение пилонной станции глубокого заложения "Красные Ворота" (ныне -"Лермонтовская"; 1935, арх. И. А. Фомин, инж. А. Ф. Денищенко)]. Новаторское архит. решение ряда др. станций М. основано на художеств, выразительности самих конструкций [напр., в колонной станции мелкого заложения "Дворец Советов" (ныне "Кропоткинская"; 1935, арх. А. Н. Душкин и Я. Г. Лихтенберг, инж. Л. В. Борецкий), где оригинально построенное искусственное освещение, как бы выявляющее конструкцию перекрытия, стало одним из осн. средств архит. композиции]. В колонной станции глубокого заложения "Маяковская" (1938-39, арх. А. Н. Душкин, инж. Р. А. Шейнфайн; илл. см. т. 8, стр. 556) своеобразие и новизну сложной конструкции перекрытия, обеспечившего свободу её пространств, построения, подчёркивают полосы рифлёной нержавеющей стали, применённые для декоративной отделки колонн и арок. Входы и вестибюли устраивались в существующих или вновь построенных зданиях или наземных павильонах (напр., вестибюль станции "Красные Ворота", ныне "Лермонтовская", 1935, арх. Н. А. Ладов-ский). Во 2-й пол. 30 - нач. 50-х гг. архит. решение и оформление станций М. обычно связывалось с определённой темой. Напр., тема оформления станций "Измайловская" (ныне "Измайловский парк"; 1944, арх. Б. С. Виленский) и "Комсомольская-кольцевая" (1952, арх. А. В. Щусев и др.) - боевое прошлое России, подвиги сов. народа в период Великой Отечеств, войны 1941-45. В оформлении станций и наземных вестибюлей М. использовались мозаика, живопись, скульптура, декоративно-прикладное иск-во (работы Н. Я. Данько, А. А. Дейнеки, П. Д. Корина, М. Г. Манизера и др.). Со 2-й пол. 50-х гг. в стр-ве станций сов. М. внедряется унификация объёмно-планировочных решений и конструкций индустриального изготовления, позволившая ускорить и удешевить стр-во (станции мелкого заложения Калужского радиуса М. в Москве, 1962, арх. С. М. Кравец, Г. Е. Голубев, М. Ф. Марковский, повторены на др. радиусах). Индивидуализация облика отд. станций М. достигается разнообразием применяемых материалов, их цвета и фактуры, различием систем освещения. Строятся новые типы станций М. [напр., станция "Ленинские горы" в Москве (1959, инж. В. Г. Андреев и Н. Н. Рудомазин, арх. К. Н. Яковлев и А. И. Сусоров), расположенная над проезжей частью набережной и р. Москвой в нижнем ярусе 2-ярусного моста; станция "Парк Победы" в Ленинграде (1961, арх. А. К. Андреев, инж. Л. В. Фролов, Г. А. Скобенников, С. П. Щукин), являющаяся первой в мире станцией без боковых перронных залов -из среднего зала пассажиры входят через автоматически открывающиеся двери непосредственно в вагоны поезда (при этой конструкции станции значительно снижаются объёмы и стоимость работ)]. Наземные вестибюли сооружаются обычно из сборных железобетонных конструкций в виде лёгких функционально оправданных павильонов, с большими поверхностями остекления.

С кон. 50-х гг. для мирового градостроительства характерна тенденция к объединению станций М. с др. гор. трансп. сооружениями с целью создания больших удобств и безопасности для пассажиров и наиболее эффективного комплексного использования подземного пространства городов. Строятся объединённые станции для удобной пересадки с М. на гор. и пригородные жел. дороги и в обратном направлении. За рубежом строят также объединённые станции, обслуживающие М. и подвозящий уличный транспорт (автобус, трамвай и др.), а также станции обычного и скоростного (экспрессного) М. При станциях сооружается разветвлённая система входов и выходов (к-рые иногда совмещаются с подземными переходами под улицами и площадями), иногда комплексы т. н. попутного обслуживания.

Строительство метрополитена. Строительство линии М. начинают с геодези-ческо-маркшейдерских работ по перенесению трассы в натуру. Тоннели, сооружаемые закрытым способом, ориентируют путём передачи проектных координат через шахтные стволы. При глубоком заложении М. шахтные стволы, как правило, располагают в стороне от трассы и соединяют с тоннелями подходными выработками, к-рые в период стр-ва используются для трансп. целей, а в законченном сооружении -для размещения вентиляц. оборудования. При сооружении тоннелей мелкого заложения закрытым способом принимаются меры, исключающие осадку поверхности, повреждения сооружений гор. подземного х-ва и расположенных поблизости зданий. При открытом способе работ (рис. 3) поверхность улиц вскрывается и тоннельные конструкции возводятся в котловане со свайными креплениями или с откосами. Движение наземного гор. транспорта "отводится в сторону" или пропускается по врем, мосту через котлован. Гор. подземные сооружения заранее перекладываются или "подвешиваются" к крепям котлована. Основания и фундаменты зданий, расположенных вблизи трассы, при необходимости укрепляют.

Сооружение тоннелей закрытым способом производится щитами проходческими или горными методами. В тяжёлых инженерно-геологич. условиях (плывунные и водоносные грунты) применяют спец. методы: кессон, замораживание грунтов, водопонижение, химии, закрепление грунтов и др. Конструкции тоннельных сооружений М. (рис. 4) выполняются из сборных железобетонных или металлич. элементов, а также из монолитного бетона и железобетона.

Рис. 3. Строительство станции метрополитена открытым способом.

Рис. 4. Камера съездов метрополитена.

Строительство М. обычно осуществляется индустриальными методами (рис. 5) с комплексной механизацией всех осн. процессов работ. Большими достижениями сов. техники метростроения являются: разработка конструкций сборных железобетонных тоннельных обделок и способа сооружения тоннелей из монолитно-прессованного бетона (обеспечивающих значит, снижение расхода металла и стоимости стр-ва), создание механизированных проходч. щитов, блокоуклад-чиков, породопогрузочных машин, самомонтирующихся кранов и т. п. Для защиты станционных сооружений М. от проникновения подземных вод, кроме гидроизоляции, применяется система во-доотводящих зонтов из асбестоцемента или др. материалов.

Моск. М. сооружается в сложных инженерно-геологич. условиях. Тоннели проходят в разнообразных напластованиях горных пород (слабые и плывунные грунты, отложения, частично разрушенные старыми реками, сочетания крепких и трещиноватых пород и т. п.). При проходке нек-рых тоннелей были преодолены значит, горное давление и обильный приток подземных вод, доходивший на отд. участках до 2500 м3/ч. Сооружён ряд подводных тоннелей под рекой Москвой. Строителями Моск. М. разработан и широко внедрён способ сооружения тоннелей мелкого заложения без вскрытия поверхности, в различных геологич. условиях, с комплексной механизацией работ. На стр-ве этим способом Калужского радиуса скорость проходки тоннелей с железобетонной обделкой достигла 14,9 м в сутки. При сооружении Ждановского радиуса в неустойчивых песчаных грунтах применён проходч. щит с горизонтальными рассекающими площадками, обеспечивший безопасную проходку тон-йеля без крепления забоя со скоростью 400 м в месяц. На Замоскворецком радиусе скорость проходки достигла 430,6 м в месяц, что является крупным достижением в мировой практике метростроения.

Рис. 5. Монтаж железобетонных конструкций станции метрополитена.

Стр-во ленингр. М. также характеризуется высоким уровнем механизации тоннельных работ. Макс, скорость проходки перегонных тоннелей при устройстве обделки из железобетонных тюбингов достигла 308 м в месяц. Пройдены подводные тоннели под р. Невой.

Киевский М. сооружается в трудных инженерно-геологич. условиях с применением спец. методов произ-ва работ и новых средств механизации. Перегонные тоннели в мягких неустойчивых породах сооружаются с помощью механизи-ров. щита, рабочий орган к-рого (в виде планшайбы) оснащён ножевыми резцами. Станция глубокого заложения "Политехнический институт" впервые в мире сооружена полностью из сборного железобетона. Значит, вклад в развитие техники метростроения сделан строителями М. Тбилиси и Баку.

Оборудование, организация движения и подвижной состав метрополитена. Конструкция и основания пути М., сварка рельсовых стыков и крепление рельсов на упругих прокладках обеспечивают высокие эксплуатац. качества пути и плавность хода поездов на больших скоростях. Управление стрелками осуществляется с постов централизации. В нек-рых зарубежных М. путь уложен на щебёночном балластном основании, что приводит к загрязнению тоннелей и образованию пыли при движении поездов.

Система электроснабжения М. включает: тяговые подстанции, где переменный ток высокого напряжения (6-10 кв) преобразуется в постоянный с напряжением 825 в, к-рый по кабелю подводится к контактному рельсу и через скользящие токоприёмники - к тяговым двигателям поезда; понижающие подстанции для нужд освещения и питания электропривода эскалаторов, вентиляторов, насосов и др. оборудования. Подстанции оборудованы системами автоматики и телеуправления с центр, диспетчерского пункта. Безопасность следования поездов М. (на отд. участках скорость достигает 90 км/ч) при интервалах движения 1,5-2 мин обеспечивается системой СЦБ (сигнализация, централизация, блокировка) с автоматич. остановкой поезда в случае проезда мимо запрещающего сигнала, а также автоматич. локомотивной сигнализацией. Всё более широкое применение на линиях М. находит автоматич. управление поездами.

М. оборудован системой искусств, приточно-вытяжной вентиляции, создающей необходимый воздухообмен для обеспечения нормальных гигиенич. условий для пассажиров и обслуживающего персонала. Чистый воздух поступает в тоннели и станции М. через шахтные стволы или ниж. отсек эскалаторного тоннеля, где устанавливаются мощные вентиляторы. Для улучшения температурного режима зимой все станционные вентиляц. установки работают на вытяжку, а перегонные - на приток свежего воздуха, летом - наоборот. В нек-рых зарубежных М. применяется только естеств. вентиляция с расчётом на поршневое действие поездов, что практически не создаёт удовлетворит, микроклимата.

Рис. 6. Пассажирский салон вагона метрополитена (СССР).

Вагоны сов. М. просторны и удобны для входа, выхода и проезда, их вместимость 270 чел., кол-во мест для сидения 44 (рис. 6). Постоянное совершенствование конструкции подвижного состава позволило увеличить скорость движения, применить электрич. тормоз и уменьшить вес вагона при сохранении его вместимости (совр. вагоны на 18% легче и потребляют на 20-22% меньше электроэнергии).

Ведущие тенденции развития сов. М.-увеличение плотности их сетей (примерно до показателя 0,3 км/км2), создание разветвлённых систем входов, приближённых к объектам массового посещения, а также удобных пересадочных узлов.

Строители сов. М. оказывают помощь в проектировании и сооружении М. во мн. странах мира, в т. ч. в столицах европейских социалистич. стран - Будапеште, Варшаве, Праге, Софии.

Илл. см. на вклейке, табл. XII, XIII (стр. 96-97).

Лит.: Пекарева Н. А., Московский метрополитен им. В. И. Ленина, М., 1958; Краткий обзор метрополитенов мира, М., 1958; Волков В. П., Наумов С. Н., Пирожкова А. Н., Тоннели и метрополитены, М., 1964; П и
куль В. С., Резниченко Е. Д., Стародубцева М.С., Метростроение в СССР, М., 1967; Строительные нормы и правила, ч. 2, разд. Д, гл. 3. Метрополитены, М., 1969; Маковский В. Л., Современное строительство тоннелей и метрополитенов за рубежом, М., 1970; Лиманов Ю. А., Метрополитены, 2 изд., М., 1971; Wrottesley A. J. F., Famous underground railways of the world, L., 1956. Г. Е. Голубев, И. М. Якобсон.

МЕТРОПОЛИТЕН-МУЗЕЙ (Metropolitan Museum of Art) в Нью-Йорке, крупнейшее художеств, собрание США. Осн. в 1870, открыт в 1872. Расположен в Центр, парке, филиал - в парке Форт-Трайон. Экспозиция состоит в основном из частных коллекций, переданных в дар музею. Отделы: амер. живописи и скульптуры, оружия, древнего дальневост. и ближневост. иск-ва, др.-егип. иск-ва, др.-греч. и др.-рим. иск-ва, исламского иск-ва, ср.-век. иск-ва (филиал), муз. инструментов, гравюры и литографии, европ. живописи, иск-ва 20 в., музей книги, дет. музей, ин-т костюма. Среди шедевров мирового иск-ва в собрании М.-м.: "Кратер с Сарпедоном" работы Евфро-ния, "Кубок Роспильози" работы Б. Чел-лини, "Мадонна с младенцем и святыми" Рафаэля, "Венера и лютнист" Тициана, "Спящая девушка" Вермера Делфтского, "Вид Толедо" Эль Греко, "Аристотель перед бюстом Гомера" Рембрандта, "Малле Баббе" Ф. Халса, "Мецетен" А. Ватто. Периодич. издания М.-м.: "The Bulletin", "Calender of Events", "Annual Report" и др.

Лит.: Lerman L., The Museum. One hundred years and the Metropolitan Museum of Art, N. Y., [1969].
И. А. Антонова.

"МЕТРОПОЛИТЕН-ОПЕРА" (Metropolitan Opera), ведущий оперный театр в США. Открыт в 1883 в Нью-Йорке. Здание построено по проекту арх.

Характеристика метрополитенов ряда городов мира (на 1 января 1973)
 

 

 

 

 

 

 

 

 

 

Страна

Город

Год ввода в эксплуатацию

Протяжённость линий, км

Число станций

Перевозка за год, млн. чел.

 

 

СССР
 
 
 
 
 
 
 
 

США
 
 
 
 
 
 
 
 

Великобритания
Франция 

ГДР 
Западный Берлин 
ФРГ

ЧССР 
Венгрия Австрия Испания

Греция 
Италия

Португалия Норвегия Швеция Нидерланды Япония
 

Аргентина Канада

Мексика

Москва Ленинград Киев 
Тбилиси
Баку 
 
 
 
 

Нью-Йорк Чикаго Филадельфия Бостон Кливленд 
 
 
 
 

Лондон Глазго
Париж Берлин
 

Гамбург 
Мюнхен 
Прага Будапешт Вена
Мадрид Барселона Афины
Рим 
Милан Лисабон
Осло Стокгольм Роттердам Токио
Осака
Нагоя Буэнос-Айрес Торонто Монреаль Мехико

1935 
1955 
1960 
1966 
1967 
 
 
 
 

1868 
1892 
1907 
1901 
1955 
 
 
 
 

1863 
1897 
1900 
1902 

1902 
1912 
1971
1974 
1896 
1898 
1919 
1924 
1925 
1955
1964 
1959 
1966
1950 
1968 
1927 
1933
1957 
1913 
1954 
1966 
1969

148,6 
44,7 
18,2 
12,6 
16,4
 
 
 
 

385 
143 
39,4
48 
30,5
 
 
 
 

387,6 
10,5 
228,6
14,6

88,9 
90,7 
15 
6,8 
13,8 
26,7 
50,9 
34 
25,7 
11,0 
34,2 
12 
28,2 
70,5 
7,6 
113,7 
67,1
32,4
34
42 
25,6 
40,8

96 
29 
14 
11 

 
 
 
 

477
154
53
48 
17
 
 
 
 

249
15 
343
22 

109
79
17

22 
25 
84 
52 
20 
11
43
20 
35 
72 

104 
67 
36 
57 
47 
28 
48

1770,4 483,3 177,7 
97,3 
62,9 
 
 
 
 

1227,8 103,5 
110 
95 
13,3
 
 
 
 

665 
15,3 1110,3 
61 

270,6 187,2 
6,7
21,9 
72,5 
502 
241,1 
92,3 
21 ,8 125,6 
70,4 
28 
187 
28 
1300
683 
179 
26,1 
169,2 127,4
390

 

Дж. К. Кейди. Зрит. зал на 3625 мест. Единственный в США постоянный оперный театр (работает 7 месяцев в году). Создан на средства акц. об-ва "Метрополитен-опера хаус компани". Субсидируется крупными фирмами, об-вами, частными лицами. Хор, оркестр и вспо-могат. коллективы стабильны; солисты и дирижёры приглашаются на определённые сезоны или на спектакли (по контрактам). Оперы исполняются на языке оригинала. Произв. амер. авторов и совр. композиторов др. стран ставятся редко, в репертуаре - мировая классика: оперы Дж. Верди, Дж. Пуччини, Г. Доницетти, Р. Вагнера, Ш. Гуно, Ж. Визе, В. А. Моцарта, Р. Штрауса и др. Успехом пользуются произв. рус. композиторов ("Борис Годунов", "Евгений Онегин", "Пиковая дама").

На сцене "М.-о." выступали крупнейшие певцы - С. Арнольдсон, Э. Карузо, Ф. И. Шаляпин, Э. Дестинова, Л. Бори, Б. Джильи, А. Галли-Курчи, Т. Руффо и мн. др., с 50-х гг.- М. Дель Монако, Б. Нильсон, Л. Прайс, Т. Гобби, Б. Христов, Л. Ризанек, Р. Скотто, Дж. Сатерленд, Р. Тебальди, К. Людвиг, Дж. Лондон, Н. Гяуров и др., а также сов. артисты - П. Г. Лисициан, Г. П. Вишневская, М. Л. Биешу. Спектаклями руководили виднейшие дирижёры-Ф. Мотль, Г. Малер, А. Тосканини, Д. Митропулос, К. Бём, Л. Стоковский, Л. Бернстайн, 3. Мета, Г. Караян и др. В сент. 1966 театр перешёл в новое здание в "Лин-кольн-сентер", оснащённое совр. техникой. Зрит, зал (на 3800 мест) отличается первоклассной акустикой. Высокая стоимость билетов делает театр недоступным для ширс-хой аудитории.

Лит.: Ромадинова Д., Музыка и музыканты Америки, III - "Метрополитен-опера", "Советская музыка", 1969, № 8; Seltsam W. H., Metropolitan opera anna-les, N. Y., [1949].

Л. Г. Григорьев.

МЕТРОПОЛИЯ (греч. metropolis, от meter - мать и polis - город), 1) др.-греч. города (полисы), имевшие колонии (см. Колонии античные). М. не имела власти над колониями, хотя покровительствовала им и в их спорах играла роль третейского судьи. 2) В эпоху колон, захватов термин "М." стал применяться к гос-вам, владеющим колониями (обычно заморскими). Политико-правовые формы связей М. с колониями могут быть различными (протекторат, вассалитет, инкорпорация и т. д.), но по существу это всегда отношения господства, подчинения и эксплуатации М. этих территорий. 3) В нек-рых гос-вах (напр., в Канаде) центр, город провинции или области. Иногда М. наз. также столицы гос-в.

МЕТРОРРАГИЯ [от греч. mitra - матка и rhegnymi - прорываю(сь)], маточные кровотечения, наступающие беспорядочно, т. е. с нарушением менструального цикла. Наблюдается при мн. видах акушерской (аборт, пузырный занос, внематочная беременность и др.) и гинекологической (полипоз слизистой матки, эрозия шейки матки, субмукозные фибромиомы, саркомы, рак половых органов и др.) патологии. В нек-рых случаях М. является наиболее выраженным признаком патологии менструального цикла; причина этих кровотечений - расстройство циркуляции крови в маточной стенке вследствие нарушения регулирующих механизмов в центр, нервной системе, ведущего к нарушению эндокринной функции яичников. Лечение - устранение причины, вызвавшей М.

МЕТСАНУРК Майт (псевд.; наст, имя и фам. Эдуард X у б е л ь) [7(19).11. 1879, Тартуский у.,-21.8.1957, Таллин], эстонский советский писатель. Род. в крест, семье. Печатался с 1904. Был журналистом. В первом романе "Биллем из Вахесааре" (отд. изд. 1909), в романе "Рабы* (1912) осуждал социальную несправедливость. Роман "Красный ветер" (1928, рус. пер. 1960) отражает классовую борьбу. В 30-е гг., в атмосфере поли-тич. реакции, социально-критич. тенденции в произв. М. слабеют. Он опубл. историч. романы "На реке Юмере" (1934, рус. пер. 1964) и "Тлеющий огонь" (1939), антиклерикальный роман "Званые и избранные" (1937). Роман "Летний солнцеворот" (1957) изображает жизнь сел. тружеников накануне 1940 в Эстонии. М. писал также рассказы, пьесы, критич. статьи.

С о ч.: Kogutud teosed, kd 1, 3, 7, Tartu, 1929 - 30; Valitud teosed, kd 1 - 4, Tallinn, 1957-69.

Лит.: Очерк истории эстонской советской литературы, М., 1971.

МЕТСЮ (Metsu, Metsue) Габриель (янв. 1629, Лейден, - похоронен 24. 10. 1667, Амстердам), голландский живописец-жанрист. Работал в Лейдене, затем в Амстердаме. Произв. М., в к-рых прослеживаются влияния Рембрандта, Г. Терборха, Я. Вермера, отличаются тонко разработанной светотенью, виртуозной передачей фактуры предметов, тканей; колорит М. строится на изысканных цветовых контрастах. Сцены из бюргерского быта у М. проникнуты ровным, несколько флегматичным настроением ("Больная и врач", Эрмитаж, Ленинград).

Лит.: В и п п е р Б. Р., О творческой эволюции Габриэля Метсю, в кн.: Из истории русского и западноевропейского искусства, М., I960, с. 314-24; Gabriel Metsu. Ten-toonstellung. Catalogus, Leiden, 1966.

Г. Метсю. "Больной ребенок". Ок. 1660. Рейксмюсеум. Амстердам.

МЕТТЕРНИХ, Меттерних-Вин-н е б у р г (Metternich-Winneburg) Кле-менс Венцель Лотар (15.5.1773, Кобленц,-11.6.1859, Вена), князь, австрийский гос. деятель и дипломат. В 1801 -1803 австр. посланник в Саксонии, в 1803 - 05 в Пруссии, в 1806 - 09 посол в Париже. В 1809-21 мин. иностр. дел и фактически глава австр. пр-ва, в 1821 -1848 канцлер. М. как дипломат был мастером тактики лавирования и выжидания, отличался умением вводить в заблуждение своих партнёров. Став министром, М. старался упрочить австро-франц. отношения, рассчитывая вернуть Австрии земли, потерянные ею в войнах с Наполеоном, и приобрести новые территории. 14 марта 1812 заключил союзный договор с наполеоновской Францией, готовившейся к походу против России. После разгрома наполеоновских войск в России выступил (в марте 1813) с предложением «мирного посредничества», стремясь использовать это посредничество в интересах Габсбургской монархии, помешать укреплению позиций России в Европе. М. решительно выступал против привлечения к борьбе с наполеоновской Францией нар. масс, был противником объединения Германии. После присоединения Австрии к антифранцузской коалиции (авг. 1813) М. тормозил развёртывание воен. действий против Наполеона. Играл большую роль на Венском конгрессе 1814—15. Потерпев неудачу в попытке изолировать Россию, в янв. 1815 подписал вместе с представителями Великобритании и Франции секретный договор, направленный против России и Пруссии.

М.— один из гл. организаторов Священного союза. Т. н. система Меттерниха была направлена на борьбу с революционным, либеральным и нац.-освободит, движением во всех странах; М. был инициатором политики полицейских репрессий в Австрии и гос-вах Германии. Стремясь укрепить феодально-абсолютистский строй и господство австр. меньшинства в многонац. Габсбургской монархии, пр-во М., выражавшее интересы феод, землевладельцев и крупных финансистов, всемерно разжигало вражду между народами австр. империи. В 1847 М. предпринял окончившуюся неудачей попытку организовать иностр. вмешательство в гражд. войну в Швейцарии на стороне реакц. Зондербунда. Власть М. в Австрии была свергнута Революцией 1848—49. В марте 1848 М. бежал в Великобританию, затем направился в Бельгию (окт. 1849). В 1851, после поражения революции, вернулся в Австрию, но активного участия в политич. жизни не принимал.

К. В. Л. Меттерних.

Соч.: Aus Metternich's nachgelassenen Papieren, Bd 1 — 8, W., 1880 — 84.

Лит.: Энгельс Ф., Начало конца Австрии, К. М а р к с и Ф. Энгельс, Соч., 2 изд., т. 4; его же, Борьба в Венгрии, там же, т. 6; е г о же, Революция и контрреволюция в Германии, там же, т. 8, с. 30 — 36; его же, Роль насилия в истории, там же, т. 21, с. 432 — 37; Оберман К., О роли Меттерниха в европейской дипломатии 1813 г., в сб.: Освободительная война 1813 г. против наполеоновского господства, М., 1965; 3 а к Л. А., Монархи против народов. Дипломатическая борьба на развалинах наполеоновской империи, М., 1966; S r b i k H., Metternich der Staatsmann und der Mensch, 3 Aufl., Bd 1 —2, Munch., 1957; Bertier de Sauvigny G., Metternich et son temps, P., 1959; М а у A. J., The age of Metternich. 1814—1848, N. Y., 1965; Оbermann K., Bemerkungen uber die burgerliche Metternich-Forschung, «Zeitschrift fur Geschichtswissenschaft», 1958, № 6; Sсhrоeder P. W., Metternich studies since 1925, «Journal of Modern History», 1961, v. 33, № 3.

Л. А. Зак

МЕТУЭНСКИЙ ДОГОВОР 1703, подписан Великобританией и Португалией 27 дек. Получил название по имени англ, посланника в Португалии лорда Метуэ-на (Methuen), подписавшего договор. По М. д. Великобритании было разрешено ввозить в Португалию свои шерстяные изделия, импорт к-рых всем гос-вам, в т. ч. и Великобритании, был в 1677 запрещён португ. пр-вом. Португалия получила право ввозить в Великобританию на льготных условиях свои вина. Предоставленные Великобритании по М. д. преимущества позволили ей в короткий срок занять господств, положение во внешней торговле Португалии и подавить развитие местной португ. пром-сти, что усилило зависимость Португалии от Великобритании, обусловленную Лисабонским договором 1703. В 1836 М. д. был формально отменён; однако зависимость Португалии от Великобритании сохранилась и в дальнейшем.

МЕТЦИГ (Maetzig) Курт (р. 25.1.1911, Берлин), немецкий кинорежиссёр (ГДР), чл. Герм, академии иск-в. В 1935 окончил Высшую технич. школу. В кино с 1933. В годы 2-й мировой войны 1939-1945 вступил в ряды Коммунистич. партии Германии. Один из организаторов кинопроизводства ГДР, с 1946 художеств, руководитель киностудии ч ДЕФА". Творчество М. отличается антифашистской направленностью, публицистичностью. Его картины "Брак в тени" (1947), "Пестроклетчатые" (1949), чСовет богов" (1950) рассказывают о периоде фашизма в Германии и годах войны. Значит, явлением стали фильмы "Эрнст Тельман - сын своего класса" (1954; пр. Мира на 8-м Междунар. кинофестивале в Карлови-Вари) и -"Эрнст Тельман -вождь своего класса" (1955) и др. В 1967 создал фильм "Знамя Кривого Рога" -о нем. шахтёрах, сохранивших в годы нацизма знамя своих сов. товарищей, переданное им в 1929. В 1954 организовал Высшую немецкую киношколу в Бабельсберге (ныне Высшая нем. школа кино и телевидения), с 1955 профессор. Нац. пр. ГДР (1949, 1950, 1954, 1959).

Лит.: Касьянова Л., К а р а в а ш-кин А., Дорога к мастерству, М., 1973, с. 17-55. О.В.Якубович.

МЕТЧИК, режущий инструмент для нарезания винтовой резьбы в предварительно просверленном отверстии. М. представляет собой цилиндрич. валик, имеющий на одном конце режущие кромки. Другой конец М. (хвостовик) предназначен для закрепления в патроне или удержания его в воротке во время работы. Осн. типы М.: ручные; гаечны е-для нарезания за один проход полной резьбы в сквозных отверстиях; м а-шинные - для нарезания резьбы гл. обр. в глухих отверстиях на сверлильных станках, автоматах и спец. агрегатных станках; станочные - для получения резьбы в сквозных отверстиях на гайконарезных станках; бесканавоч-н ы е - для нарезания за один проход резьбы в сквозных отверстиях; автоматные - для нарезания резьбы в гайках на гайконарезных автоматах; плашечные и маточные - для нарезания резьбы и калибровки и удаления заусенцев в резьбовых отверстиях круглых плашек. Материал для изготовления М.- легированная инструментальная и быстрорежущая сталь. См. Металлорежущий инструмент.

МЕФИСТОФЕЛЬ (Mephistopheles, Me-phostophilis, Mephistophilus, возможно, греч. происхождения - "ненавидящий свет", от те - не, phos - свет и philos - любящий; по др. версии, др.-евр. происхождения - of мефиц - разрушитель и тофель - лжец), наименование одного из духов зла, демона, чёрта, беса, дьявола, чаще всего, по преданию, падшего ангела, сатаны. Фольклор и художеств. лит-pa разных стран и народов нередко использовали мотив заключения союза между демоном - духом зла и человеком. Иногда поэтов привлекала история "падения", "изгнания из рая" библейского сатаны, иногда - его бунт против бога (Дж. Мильтон, Дж. Г. Байрон, М. Ю. Лермонтов). Бытовали и фарсы, близкие фольклорным источникам, дьяволу в них отводилось место озорника, весёлого обманщика, часто попадавшего впросак. В филос. трагедии И. В. Гёте, переосмыслившего мотивы нем. нар. легенды, М.- искуситель и антагонист Фауста. К образу М. обращался А. С. Пушкин. М.- чёрт у Ф. М. Достоевского ("Братья Карамазовы") и Т. Манна ("Доктор Фаустус")-воплощение морального нигилизма. М.- Воланд и его свита М. Булгакова ("Мастер и Маргарита") - гротескные духи зла, обличители, наказывающие пороки. Образ М. вдохновлял художников (Э. Делакруа, М. Врубель), композиторов (Ш. Гуно, Г. Берлиоз, Ф. Лист, А. Г. Рубинштейн).

Лит. Легенда о докторе Фаусте. Изд. подготовил В. М. Жирмунский, М.- Л., 1958; Лакшин В., Роман М. Булгакова "Мастер и Маргарита", "Новый мир", 1968, МЬ 6; Milner М., Le diable dans la 1 literature francaise, t. 1-2, P., 1960; К г е t z e n-bacher L., Teufelsbundner und Faustge-stalten im Abendlande, Klageniurt, 1968.

М. А. Гольдман.

МЕФОДИЙ (ок. 815-6.4.885), славянский просветитель, старший брат Кирилла; см. в ст. Кирилл и Мефодий.

МЕХ ИСКУССТВЕННЫЙ, текстильное изделие, имитирующее натуральный мех. Благодаря высоким теплоизоляционным свойствам и сравнительно низкой стоимости при массовом произ-ве широко используется для изготовления одежды, головных уборов и отделки. М. и. служит также обивочным и прокладочным материалом. Широко распространены тканые и трикотажные длинноворсные М. и., имитирующие дорогие натуральные меха норки, куницы, енота, ондатры, обезьяны и даже лисы, а также меха с гладким ворсом - мех жеребёнка, телёнка, нерпы и др.

М. и. состоит из несущего основания (грунта) и ворсового покрова. Различают М. и.: тканый, трикотажный, прошивной, клеевой и получаемый приклеиванием ворсинок в электростатич. поле. Тканый М. и. образуется тремя системами нитей - ворсовыми, коренными и уточными. При этом два грунтовых полотна связаны ворсовыми нитями, к-рые затем разрезаются. При трикот. способе ворс ввязывается на спец. кругловязальных машинах (см. Трикотажная машина). При прошивном и клеевом способах несущее основание и ворс изготовляют раздельно. Ворс закрепляют на несущем основании прошиванием или наклеиванием. С помощью клеевого способа получают, напр., искусств, каракуль. При изготовлении М. и. электростатич. способом волокна, заряженные в электростатич. поле и затем ориентированные, распределяются равномерно по предварительно обработанной клеем поверхности ткани, на к-рой они закрепляются после высушивания, образуя ворс. М. и. вырабатывается с любой плотностью ворсового покрова. Последний по высоте и распределению более равномерен, чем волос натурального меха. По внешнему виду М. и. почти полностью воспроизводит цвет, рисунок и расположение ворса имитируемого меха. Для образования ворсового покрова М. и. применяются различные мононити или комплексные полиамидные и полиэфирные вискозные и ацетатные нити (см. Волокна химические). Для длин-новорсного меха наиболее часто употребляют пряжу из полиакрилонитриль-ных волокон, к-рые благодаря шерстистости, малой плотности, высокой упругости, малой теплопроводности и весьма низкой гигроскопичности особенно пригодны для изготовления М. и. Для основания (грунта) М. и. используют хл,-бум. пряжу, иногда с целью упрочнения - синтетич. нити.

М. и. выпускают различных цветов и рисунков. Последующая отделка М. и. обеспечивает устойчивость ворсового покрова к смятию, пушистость, гид-рофобность, создание того или иного узорчатого или тиснённого рисунка путём механич., термич. и химич. обработок. В зависимости от фактуры имитируемого меха отделка включает следующие осн. процессы: многократное расчесывание, стрижку - подравнивание ворсового покрова, крашение, термич. обработку, полировку, узорчатое расцвечивание ворса и др. Для придания изнанке ткани вида кожи и прочного закрепления ворса в основании применяют проклеи-вание латексами и аппретами, дублирование с поролоном. В СССР в 1972 выпущено ок. 60 млн. м  М.и. в.

А. Павлова.

МЕХАНИЗАЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА ИНСТИТУТ всесоюзный научно-исследовательский (ВИМ), находится в Москве. Осн. в 1930. Имеет (1973): 33 лаборатории, отделы - научно-организационный; научно-методический; научно-тех-нич. информации, изобретательства и па-тентоведения; полевых испытаний с.-х. техники; измерений; перспективной системы машин для комплексной механизации растениеводства; механизации применения удобрений; механизации уборки зерновых культур; комплексных предприятий и процессов по переработке и хранению зерна; механизации комплексной уборки зелёных кормов; с.-х. транспорта; перспективной тракторной с.-х. энергетики; эксплуатации машинно-тракторного парка. В ведении ин-та: Армавирская опытная станция (г. Армавир Краснодарского края), опытное х-во "Каменка" (Подольский р-н Моск. обл.), Котовский опорный пункт (г. Котовск Одесской обл.), Новотроицкий опорный пункт (с. Ясные Поляны Троицкого р-на Челябинской обл.), Ставропольский опорный пункт (г. Ставрополь), Центральное опытно-конструкторское бюро (Москва), Машиностроительный з-д опытных конструкций (Москва). Ин-т разрабатывает теорию с.-х. машин и новые технологич. процессы возделывания, уборки и послеуборочной обработки с.-х. культур; системы машин для комплексной механизации с.-х. произ-ва, рациональные методы использования машинно-тракторного парка. Ин-т имеет очную и заочную аспирантуру. Издаёт "Труды" (с 1935).

Г. Т. Павловский.

"МЕХАНИЗАЦИЯ И АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВА", ежемесячный научно-технич. журнал, орган Мин-ва станкостроительной и инструментальной пром-сти СССР. Издаётся в Москве с 1947. В 1947-58 выходил под назв. "Механизация трудоёмких и тяжёлых работ". С 1959 -"М. и а. п.". Освещает вопросы комплексной механизации и автоматизации в различных отраслях нар. х-ва (машиностроении, металлургии, горнорудной, химич., лесной, лёгкой, пищ. пром-сти и др.), кроме с. х-ва и строительства. Публикует материалы по механизации тяжёлых и трудоёмких погрузоч-но-разгрузочных, транспортных и складских работ, большое внимание уделяет механизации и автоматизации инженерного и управленческого труда и др. Сообщает о новейших достижениях в области механизации и автоматизации за рубежом. Тираж (1974) 20 тыс. экз.

"МЕХАНИЗАЦИЯ И ЭЛЕКТРИФИКАЦИЯ СОЦИАЛИСТИЧЕСКОГО СЕЛЬСКОГО ХОЗЯЙСТВА", ежемесячный научно-технич. журнал, орган Всесоюзной академии с.-х. наук им. В. И. Ленина. Издаётся в Москве с 1930. При основании наз. "Пути механизации сельского хозяйства". Нек-рое время одновременно издавались два самостоят, журнала -"Механизация социалистического сельского хозяйства" (1931 - 37) и "Электрификация сельского хозяйства" (1931-37). Освещает важнейшие проблемы создания и эффективного использования с.-х. техники. Тираж (1973) 33 130 экз.

МЕХАНИЗАЦИЯ КРЫЛА, комплекс устройств, изменяющих подъёмную силу и лобовое сопротивление крыла летательного аппарата. М.к. уменьшает скорость посадки самолёта, а при взлёте облегчает его отрыв от поверхности земли. В зависимости от типа М. к. подъёмную силу можно увеличить в 1,5-2 раза и более, благодаря чему посадочную скорость можно уменьшить на 20-50% и более. Добавочную подъёмную силу получают: увеличением кривизны профиля крыла (рис., 1 и 2) и площади его поверхности (рис., 2), улучшением обтекания (воздухом) крыла посредством управления пограничным слоем (рис., 3), применением реактивных устройств (рис.,4). На практике часто применяются комбинации этих способов, напр, выдвижные предкрылки и закрылки (рис., 2,в).

Система управления пограничным слоем осуществляется в двух вариантах: сдуванием пограничного слоя сжатым воздухом, поступающим от двигателя в проложенные по размаху крыла трубопроводы с отверстиями, или отсосом этого слоя аналогичной системой. Существенно улучшает обтекание крыла также реактивный закрылок (рис., 4), создающий дополнит, подъёмную силу за счёт подачи сжатого воздуха в щель между верхней и нижней его поверхностями. Если мощность двигателей достаточно велика, то такой закрылок позволяет получить подъёмную силу, равную весу самолёта, т. е. обеспечить висение самолёта в воздухе, а при силе, большей веса,- и вертикальный взлёт.

Торможение самолёта в воздухе производится интерцепторами (рис., 5), зависающими (отклоняемыми одновременно вниз) элеронами (рис., 1, в), работающими как закрылки, и др. устройствами. Кроме подвижных поверхностей, положение к-рых устанавливается лётчиком или автоматически, в М. к. входят гид-ро-, электроприводы, проводка управления (тяги, качалки и т. д.), трубопроводы и др. части. с.

Я. Макаров.

Механизация крыла: 1 - увеличением кривизны профиля (а-отклоняемый носок крыла, б-щиток, в-простой закрылок): 2-увеличением площади крыла и кривизны профиля (а - предкрылок, 6-двухщелевой закрылок, в - предкрылок Крюгера с трёхщелевым закрылком); 3-путём управления пограничным слоем (а-турбулизатор, б-отсасывание пограничного слоя): 4-реактивным устройством (реактивный закрылок); 5 - интерцептором.

МЕХАНИЗАЦИЯ ПРОИЗВОДСТВА, замена ручных средств труда машинами и механизмами с применением для их действия различных видов энергии, тяги в отраслях материального производства или процессах трудовой деятельности. М. п. охватывает также сферу умственного труда (см., например, Механизация учёта, Информационный поиск и др.). Осн. цели М. п.- повышение производительности труда и освобождение человека от выполнения тяжёлых, трудоёмких и утомительных операций. М. п. способствует рациональному и экономному расходованию сырья, материалов и энергии, снижению себестоимости и повышению качества продукции. Наряду с совершенствованием и обновлением технич. средств и технологии М. п. неразрывно связана с повышением уровня квалификации и организации произ-ва, изменением квалификации работников, использованием методов научной организации труда. М. п. является одним из главных направлений технич. прогресса, обеспечивает развитие производительных сил и служит материальной основой для повышения эффективности обществ. произ-ва, развивающегося интенсивными методами. К технич. средствам М. п. относятся рабочие машины с двигателями и передаточными устройствами к ним, совершающие заданные операции, а также все др. машины и механизмы, непосредственно не участвующие в этих операциях, но необходимые для того, чтобы данный процесс произ-ва мог вообще совершаться, напр, вентиляционные и откачные установки.

В зависимости от степени оснащения производственных процессов техническими средствами и рода работ различают частичную и комплексную М. п.

При частичной М. п. механизируются отд. производств, операции или виды работ, гл. обр. наиболее трудоёмкие, при сохранении значит, доли ручного труда, особенно во вспомогат. погру-зочно-разгрузочных и трансп. работах.

Более высокой ступенью является комплексная М. п., при к-ров ручной труд заменяется машинным на всех осн. операциях технологич. процесса и вспомогательных работах производств, процесса. Комплексная М. п. осуществляется на основе рационального выбора машин и др. оборудования, работающих во взаимно согласованных режимах, увязанных по производительности и обеспечивающих наилучшее выполнение заданного технологич, процесса. Ручной труд при комплексной М. п. может сохраняться на отд. нетрудоёмких операциях, механизация к-рых не имеет существенного значения для облегчения труда и экономически нецелесообразна. За человеком остаются также функции управления процессом произ-ва и контроля. Комплексная М. п. предопределяет возможность применения поточных методов производства продукции, способствует повышению её качества, обеспечивает сохранение однородности, степени точности и постоянство заданных параметров.

Следующей после комплексной М. п., ступенью совершенствования процессов произ-ва является частичная или полная их автоматизация (см. Автоматизация производства).

Средства труда, будучи составной частью производительных сил, создаются и совершенствуются в процессе обществ.произ-ва. Изобретение новых орудий труда и внедрение новых технологич. процессов непосредственно связаны с развитием естествознания и совершаются на основе познания и использования его законов. До промышленного переворота 18-19 вв. орудия труда оставались ручными и количество рабочих инструментов, к-рыми человек мог действовать одновременно, ограничивалось его естественными орудиями, т. е. органами его тела. К числу используемых сил природы относились вода, ветер и приручённые животные. В мануфактурный период, предшествовавший пром. перевороту, разделение ремесленного труда и его профессий, а также специализация инструментов достигли столь высокой степени, что возникли предпосылки к соединению орудий труда в машине и замене механизмом руки рабочего с инструментом. "В качестве машины,- отмечал К.Маркс,-средство труда приобретает такую материальную форму существования, которая обусловливает замену человеческой силы силами природы и эмпирических рутинных приемов - сознательным применением естествознания" (М арке К. к Энгельс Ф., Соч., 2 изд., т. 23, с. 397). Совершенствование орудий и приёмов труда, появление универсальной паровой машины, применение машин и механизмов для облегчения труда вызвали в кон. 18- нач. 19 вв. резкий скачок уровня и масштабов произ-ва. Заменяя ручной труд в выполнении технологич. и трансп. функций, механич. средства труда явились исходным пунктом тех-нич. прогресса в различных отраслях пром-сти, сыграли важную роль в формировании капиталистич. способа произ-ва. Пром. революция создала условия для М. п., в первую очередь ткацкого, прядильного, металле- и деревообрабатывающего. Возможность использования мощности паровой машины для привода ряда рабочих машин привела к созданию самых различных передаточных механизмов, разраставшихся во мн. случаях в широко разветвлённую механич. систему.

С увеличением размеров двигательного и передаточного механизмов, с усложнением рабочих машин, с появлением новых материалов, трудно поддающихся обработке, возникает объективная необходимость в применении различных машин и механизмов в самом машиностроит. произ-ве. Начав произ-во машин машинами, крупная промышленность создала тем самым равноценный ей технич. базис. На протяжении 19 в. М. п. быстро проникает не только в отдельные звенья производств, процесса, но и завоёвывает одну отрасль пром-сти за другой, вытесняя старые традиц. формы произ-ва, основывавшиеся на ручном труде и примитивной технике. Механизир. произ-во получает широкое распространение во всех развитых странах.

С развитием крупной пром-сти совершенствуется конструкция, увеличиваются мощность и производительность средств М. п. С кон. 19 в. наряду с паровой машиной постепенно внедряется более экономичный и компактный двигатель внутреннего сгорания, к-рый позволил создать новые рабочие и трансп. машины-тракторы, автомобили, экскаваторы, теплоходы, самолёты и др. Появляются новые способы преобразования энергии, основанные на использовании паровых и гидравлич. турбин, соединённых с генераторами электрич. тока. Развитие и совершенствование электрич. машин приводит в первой пол. 20 в. к повсеместному внедрению группового и индивидуального электропривода рабочих машин в металлорежущих, деревообр., ткацких и др. станках, кузнечно-прессо-вых, горных, подъёмно-транспортных машинах, прокатных станах и т. д.

В системе машин предмет труда последовательно проходит через ряд связанных между собой частичных процессов, к-рые выполняются цепью разнородных, но взаимно дополняющих друг друга машин, механизмов, аппаратов. Система механич. средств труда приводит к непрерывно-поточному произ-ву в развитой форме.

Дальнейшее развитие М. п. направлено на макс, интенсификацию производственных процессов, сокращение техно-логич. цикла, высвобождение рабочей силы, осуществление комплексной механизации в наиболее трудоёмких отраслях произ-ва.

В числе технич. средств М. п. получили развитие комбинированные машины - комбайны, в к-рых агрегаты, расположенные в технологич. последовательности, автоматически воздействуют на предмет труда. Развитие комбинирования, комплексной механизации и автоматизации привело к созданию автоматических линий машин, цехов-автоматов и автоматич. з-дов, обладающих высокой производств, эффективностью.

В условиях капиталистич. общества и свойственных ему производственных отношений средство труда, выступив как машина, тотчас же становится конкурентом рабочего, одним из главных средств его эксплуатации и самым мощным оружием в руках капиталистов для подавления возмущений рабочих. "...Введение машин усилило разделение труда внутри общества, упростило функции рабочего внутри мастерской, увеличило концентрацию капитала и еще больше расчленило человека" (Маркс К., там же, т. 4, с. 158). Целесообразность применения новых средств производства при капитализме обеспечивается тем, что их стоимость должна быть ниже стоимости заменяемой ими рабочей силы.

В социалистич. обществе машины и все другие технич. средства механизации труда создаются и используются не в конкурентных целях и не для эксплуатации рабочего, а для повышения производительности труда, экономической эффективности общественного производства, для облегчения и улучшения условий трудовых процессов, что в конечном итоге направлено на повышение материального благосостояния и культурного уровня народа. "Раньше,- писал В. И. Ленин,- весь человеческий ум, весь его гений творил только для того, чтобы дать одним все блага техники и культуры, а других лишить самого необходимого - просвещения и культуры. Теперь же все чудеса техники, все завоевания культуры станут общенародным достоянием, и отныне никогда человеческий ум и гений не будут обращены в средства наживы, в средства эксплуатации" (Полн. собр. соч. 5 изд., т. 35, с. 289).

В условиях планового социалистич. х-ва создаются наиболее благоприятные условия для рационального использования М. п. как основы технич. прогресса в пром-сти и с. х-ве. "Крупная машинная промышленность и перенесение ее в земледелие есть единственная экономическая база социализма..." (Ленин В. И., Поли. собр. соч., 5 изд., т. 44, с. 135). В социалистич. обществе М. п. является могучим орудием человека для всестороннего облегчения труда и неуклонного роста общественного произ-ва. Внедрение механизации в социалистич. народном хозяйстве происходит и в тех случаях, когда результатом её является не только материальный эффект, но также улучшение условий труда, повышение его безопасности. Способствуя ликвидации тяжёлого ручного труда, сокращению рабочего дня и повышению культур-но-технич. и материального уровня трудящихся, М.п. играет важную роль в осуществлении науч. организации произ-ва, в стирании существ, различий между умственным и физическим трудом.

В СССР М. п. являлась основой индустриализации страны и коллективизации с. х-ва; она предопределяет темпы роста производительности обществ, труда на основе дальнейшего развития комплексной механизации и автоматизации производств, процессов.

Осуществление М.п. зависит в первую очередь от оснащения промышленности, строительства, транспорта, с. х-ва наиболее совершенными машинами, механизмами и устройствами (см. табл.). Наиболее высокими темпами в СССР развивалось произ-во машин, механизмов, установок и оборудования в ведущих отраслях пром-сти (энерго- и электромашиностроение, станкостроение, горное и хим. машиностроение). Высокие темпы роста характерны также для приборостроения, произ-ва радиоаппаратуры, средств автоматики и вычислит, техники, электробытовых машин и механизмов. Уровень и эффективность М. п. определённой отрасли произ-ва или процесса, на практике оценивают по различным показателям. Такими показателями могут быть: уровень механизации труда, уровень механизации работ,механовооружён-ность и энерговооружённость труда и др. Под уровнем (коэффициентом) м е-ханизации труда понимается удельный вес механизир. труда в общих затратах труда на изготовление тех или иных изделий или на выполнение работ-по участку, цеху, предприятию и т. д. Этот показатель определяется по соотно-шению затрат времени на выполнение механизир. и ручных работ. Аналогичное назначение имеет показатель степени охвата рабочих механизир. трудом, к-рый определяется отношением числа рабочих, выполняющих работу механизир. способом, к общему числу рабочих. Специфика нек-рых видов произ-ва вызывает необходимость введения такого показателя, как уровень (коэффициент) м е-ханизации работ - отношение объёма продукции, выполненной механизир. способом, к общему объёму продукции. Этот показатель используется в литейном и кузнечном произ-вах, на транспортных и строительных работах и др. Механовооружённость труда оценивается обычно стоимостью находящихся в произ-ве машин и механизмов, приходящихся в среднем на одного рабочего. Энерговооружённость труда (или в нек-рых случаях электровооружённость) выражается отношением кол-ва механич. и электрич. (или только электрич.) энергии, потреблённой в процессе произ-ва на 1 отработанный чел.-час или на 1 рабочего. Эти показатели применяются условно для сравнительной оценки механизации отдельных процессов. При выборе технич. средств М. п., стоимость к-рых входит в состав капитальных затрат и переносится на стоимость продукта за всё время их использования, учитываются масса и размеры, сроки окупаемости, энергопотребление, надёжность в работе;

Развитие производства некоторых важнейших средств механизации в СССР
 

 

Средства механизации

1913

1940

1950

1960

1970

1972

 

 

Металлорежущие станки, тыс. шт
Кузнечно-прессовые машины, тыс. шт.
Турбины, тыс. нет 
Генераторы к турбинам, тыс. нет 
Электродвигатели перем. тока, тыс. нет
Металлургич. оборудование, тыс. т
Комбайны угольные очистные, шт. 
Грузовые автомобили, тыс. шт. Тракторы, тыс. шт. 
Комбайны зерноуборочные, тыс. шт. 
Тепловозы магистральные, секций.
Электровозы магистральные, шт. 
Экскаваторы, шт. 
Ткацкие станки, тыс. шт.

 
1,8

-
5,9

-

280

1

-

-

-
-
-

-

4,6

58,4 

4,7 

1179 

468 

2083 

23,7 

22 
136 
31,6 

12,8 

5

9
274
1,8

70,6 

7,7 

2704 

934 

7703 

111,2 

344 
294,4 
116,7 

46,3 

125 

102 3540
8,7

155,9 

29,9 

9200 

7915 

19456 

218,3 

881 
362 
238,5 

59 

1303 

396 12589 16,5

202,2 

41,3 

16191 

10578 

36259 

314 

1130 
524,5 
458,5 

99,2 

1485 

323 30844 19,8

211,3

44 

14642 

13661 

40035 

322,1 

1117 
1379 
477,8 

95,7 

1488 

351 34875 19,3

 

износостойкость узлов и деталей, сохранение постоянства осн. параметров за весь период эксплуатации, быстрота наладки, способность к переналаживанию для совершения др. аналогичных операций, простота обслуживания, технич. осмотра и ремонта.

М. п.в отраслях народного хозяйства СССР. Создание крупной социалистич. пром-сти, способной решать самые сложные научно-технич. проблемы и народно-хозяйств. задачи, является величайшим завоеванием сов. народа, торжеством ленинских идей социалистич. индустриализации. Революц. значение имеют крупнейшие мероприятия по механизации работ в различных отраслях народного х-ва, выполненные за годы Советской власти. Разработаны и внедрены в произ-во тысячи образцов совр. высокопроизво-дит. машин-орудий. Создаются системы машин для комплексной механизации и автоматизации основных производств, процессов в пром-сти, стр-ве, с. х-ве и на транспорте. На основе повышения технич. уровня произ-ва последовательно сокращается применение ручного и тяжёлого, а также неквалифицированного труда во всех отраслях народного х-ва. При этом потребность в технических средствах для завершения комплексной механизации во всех отраслях неуклонно возрастает.

М. п. в энергетике связана с вводом в действие крупных электрич. станций и созданием объединённых энергосистем. Укрупнение мощности электростанций позволяет значительно сократить затраты труда, материалов и топлива на произ-во электроэнергии, применять эффективные средства контроля, регулирования и управления как отдельными агрегатами, так и электростанциями в целом. Энергетические мощности СССР будут увеличиваться гл. обр. за счёт стр-ва тепловых электростанций с крупными энергоблоками мощностью 300, 500, 800 Мвт, а в дальнейшем мощностью 1000 Мвт и выше. Обслуживание таких энергоблоков полностью механизируется, что значительно уменьшает потребность в рабочей силе на единицу установленной мощности. М. п. в теплоэнергетике направлена на совершенствование средств приготовления, загрузки, подачи топлива, способов водоочистки, золоудаления и т.п. Для гидроэлектростанций созданы турбины мощностью 500 Mвт (Братская ГЭС) и создаются турбины мощностью 630 Мвт (для Саяно-Шушенской ГЭС). На атомных электростанциях найдут широкое применение реакторные установки мощностью 1000 Мвт и более. Отличительной особенностью атомной энергетики является комплексная механизация и автоматизация технологич. процессов, что позволяет благодаря сокращению трудовых и материальных затрат обеспечить её высокую конкурентоспособность по отношению к традиционным отраслям энергетики.

В горной промышленности М. п. направлена на сокращение сроков вскрытия, подготовки и введения в эксплуатацию новых месторождений и горизонтов, а также на сокращение расходов на поддержание выработок в рабочем состоянии, что связано с расширением комплексности в механизированных процессах подземной и открытой добычи полезных ископаемых. В шахтах применяются высокопроизводит. узкозахватные комбайны и струговые установки, работающие в сочетании с передвигающимися забойными конвейерами и индивидуальными металлич. или гидрофицир. крепями (см. Комплексы угольные). В результате внедрения машин и механизмов уровень механизации навалки угля в лавах пологого и наклонного падения составил в 1972 св. 90%; доставка угля, подземная откатка угля и породы и погрузка угля в ж.-д. вагоны полностью механизированы. Внедряются способы безлюдной выемки угля, обеспечивающие значительное повышение производительности труда. Развивается добыча угля гидравлич. способом (см. Гидромеханизация). Быстрыми темпами развивается открытая разработка месторождений с применением комплексной М. п. на основе высокопроизводительного оборудования: драглайнов, роторных экскаваторов, транспортно-от-вальных мостов, мощных самосвалов, электровозов, думпкаров, дизель-троллейвозов и др.

В газовой и нефтедобывающей промышленности применение высокопроизводит. средств М. п. способствовало увеличению добычи нефти и газа и повышению их удельного веса в топливном балансе страны. На нефтепромыслах используется мощное буровое оборудование, в т. ч. установки для бурения глубоких скважин, внедряются комплексные гидрофицир. буровые установки с дискретным выполнением спуско-подъёмных операций, механизацией и автоматизацией всех процессов бурения. Продолжается оснащение нефтедобывающих предприятий блочно-комплектными автоматизир. установками, которые обеспечивают значительную экономию рабочей силы, средств и времени. Повышение уровня механизации и индустриализации стр-ва газовых промыслов, подземных хранилищ газа, газоперерабатывающих з-дов обеспечивается применением блочных и блоч-но-комплектных технологич. установок, полносборных зданий и сооружений с металлическими каркасами. Для транспортировки газа широкое применение получают газопроводы диаметром 1420 мм при рабочем давлении 7,5 Мн/м2. В результате внедрения комплексной механизации и автоматизации компрессорные станции газопроводов, сооружаемых в арктических и др. труднодоступных р-нах страны, работают практически без обслуживающего персонала.

Вметаллургии М. п. направлена на завершение механизации отдельных трудоёмких работ и осуществление комплексной М. п. в доменных, сталеплавильных и прокатных цехах. Механизированы наиболее тяжёлые работы у горнов доменных печей, все необходимые операции по обслуживанию лёток. Осуществляется выпуск механизированного оборудования для обслуживания доменных печей объёмом 3200 м3, разработан комплекс механизир. оборудования для доменных печей объёмом 5000 м3. Работа новых агрегатов с повышенным давлением дутья и применением кислорода даёт возможность ускорения процесса плавки, снижения расхода топлива и повышения качества чугуна. В сталеплавильном произ-ве применяются совершенные заправочные машины, механизируются процессы ломки и кладки футеровки ковшей, загрузки электропечей большой ёмкости, расширяется применение систем автоматич. регулированиярасхода кислорода в конвертерах, контроля содержания углерода в металле, систем управления тепловым режимом мартеновских печей и т. п. Дальнейшее развитие получат конвертерный способ выплавки стали с применением конвертеров ёмкостью 250-300 т и непрерывная разливка стали с высоким уровнем комплексной М. п. Для повышения качества стали предусматривается развитие таких механизированных процессов, как обработка металла синтетическими шлаками, внепечное вакуумирование, электрошлаковый и вакуумный переплавы металла. Для новых технологических процессов созданы машины и оборудование, работающие по принципу автоматич. регулирования производственных процессов и комплексной механизации операций по подготовке шихты, загрузке агрегатов и разливке металлов. В сталеплавильном произ-ве нашёл широкое применение природный газ. В прокатном произ-ве вводятся в действие комплексно-механизир. станы горячей и холодной прокатки листовой стали с агрегатными линиями для нанесения на листы металлич. и неметаллич. покрытий; предусматривается создание прецизионных и спец. станов для выпуска сортового проката высокой точности и экономичных профилей, механизированных и автоматизированных линий для отделки (адъюста-жа), правки, сортировки, укладки и упаковки листового и сортового проката. В машиностроении М. п. связана гл. обр. с количеств, составом и структурой парка металлообрабат. оборудования, т. к. наиболее трудоёмки при изготовлении изделий операции ме-ханич. обработки деталей. В массовом машиностроит. произ-ве комплексная механизация процессов механич. обработки осуществляется путём применения агрегатных, спец. и специализир. станков, станков-автоматов и полуавтоматов. Расширяется парк станков для электро-физич. и электрохимич. методов обработки, позволяющих заменять мн. трудоёмкие, утомительные и даже вредные для здоровья ручные операции при изготовлении штампов, прессформ, турбинных лопаток, твердосплавного инструмента, а также деталей особо сложной формы или из материалов, трудно поддающихся обработке обычными инструментами, расширяется использование станков с числовым программным управлением и адаптивными устройствами, а в дальнейшем намечается создание и применение различных видов программируемых манипуляторов и роботов. На М. п. в машиностроении значит, влияние окажет Езвитие производства заготовок, по норме и размерам максимально при-ижающихся к готовым деталям. С этой целью осуществляется реконструкция действующих и создание новых специализир. предприятий по произ-ву отливок и поковок. Повышается удельный вес обработки металлов давлением (см. Кузнечно-штамповочное производство). Для литейного производства будет создаваться оборудование в виде технологич. комплектов, напр, оборудование для смесеприготовительных участков, комплекты оборудования для литья по выплавляемым моделям, механизир. линии формовки, заливки, выбивки отливок и т. п. Значительное развитие получит комплексная М. п. в процессах сварки, термической обработки деталей, сборки машин.

Существенное влияние на уровень М. п. в машиностроении оказывает широкое развитие унификации и стандартизации узлов и деталей общемашиностроительного применения (подшипники, редукторы, муфты, фланцы, цепи и т. п.). а также нормализованных инструментов и типовой оснастки, изготовление к-рых организуется на специализированных предприятиях.

На подъёмно-транспортных и погрузочно-разгру-зочных работах М. п. достигается применением подъёмных кранов, перегружателей, средств напольного подъ-ёмно-трансп. оборудования, контейнеров, строит, подъёмников, лифтов, канатных дорог, монорельсовых подающих систем. К числу подъёмно-трансп. средств относятся также средства малой механизации: блоки, кошки, полиспасты и др. подъёмные механизмы. Выбор средств механизации для подъёмно-транспортных и погрузочно-разгрузочных работ определяется видом грузов (штучные, длинномерные, жидкие, сыпучие), типом транспортных средств (вагоны, суда, автомобили), тарой, объёмом выполняемых работ, расстоянием перемещения грузов и высотой подъёма. Важное значение имеет комплексность и взаимное соответствие способов подъёма, перемещения, погрузки, выгрузки и укладки грузов в пунктах отправления и прибытия. Объёмы этих видов работ зависят от числа перевалок грузов. Уровень механизации подъёмно-транспортных и погрузоч-ж>-разгрузочных работ определяется отношением количества грузов, переработанных с помощью средств механизации, к общему объёму перерабатываемых грузов. Важное значение для снижения трудовых затрат на пром. предприятиях имеет внедрение средств механизации с целью полной замены ручного труда на внутрицеховой и межцеховой погрузке и выгрузке материалов, деталей, полуфабрикатов, загрузке и выгрузке ж.-д. вагонов, грузовых автомобилей и прицепов, штабели-ровании полуфабрикатов и готовых изделий на цеховых и заводских складах. Осн. пути осуществления комплексной М. п. этих работ: рациональная организация складского х-ва предприятий, макс, приближение складов к цехам-потребителям, объединение транспортно-склад-ских операций с технологич. процессами осн. произ-ва; оснащение погрузочных площадок и складов совр. средствами механизации (кранами-штабелёрами, напольными электроштабелёрами, погрузчиками и т. д.); централизация работы внутризаводского транспорта, внедрение маршрутных перевозок; применение прогрессивных трансп. средств (конвейеров и монорельсовых дорог с автоматическим адресованием грузов, электротягачей, пневматического транспорта), внедрение бесперебойной транспортировки грузов на основе широкого использования пакетных и контейнерных перевозок с применением унифицир. оборотной тары; механизация вспомогательных операций на самих погрузочно-разгрузочных работах, связанных с застропкой и отстропкой грузов, применением контейнеров с автостропами, с формированием и расформированием пакетов на поддонах и т. д.

В строительстве М. п. связана с особенностями технологии строит, произ-ва, к к-рым относятся большая гру-зоёмкость и смена фронта работ. М. п. в строительстве облегчает труд и сокращает сроки ввода в действие объектов. Она направлена гл. обр. на превращение строительного произ-ва в механизир. поточный процесс сборки и монтажа зданий и сооружений из крупнопанельных элементов и узлов, изготовляемых на специализир. з-дах. Увеличение произ-ва строительной техники, широкое внедрение сборных железобетонных конструкций, новых строит, материалов, высокопроизводит. методов работ обеспечили в 1960-70 рост производительности труда в стр-ве на 60%. Достижения в области создания новых конструкций сооружений, совершенствование технологич. методов строит, произ-ва, увеличение объёма монтируемых элементов способствовали изменению ряда параметров строит, машин, а иногда и коренной их реконструкции, обусловили появление новых, ранее не применявшихся машин. Созданы и успешно применяются мощные землеройные, дорожные, строит, машины - многоковшовые экскаваторы, роторные и цепные траншеекопатели, колёсные одноковшовые погрузчики и др. Уровень комплексной механизации наиболее тяжёлых и трудоёмких земляных, бетонных и монтажных работ в 1972 составил 90-97,5%. Погрузка и разгрузка камня, песка, гравия, щебня, леса, металла механизированы на 97%. Механовооружённость труда в стр-ве за 1960-72 возросла в 2,5 раза. Стр-во из крупноразмерных строит, элементов, узлов, панелей и блоков с полной сбор-ностью несущих и ограждающих конструкций составляет ок. 4/4 общего объёма строительно-монтажных работ, высокими темпами механизируется труд при подготовке бетона, приготовлении раствора. Разрабатываются принципиально новые конструкции средств малой механизации и ручных машин: самоходные машины для рулонных и безрулонных покрытий пром. зданий, машины для нанесения и затирки штукатурки, окрасочные форсунки с защитными воздушными экранами и др. Дальнейшей задачей М. п. в стр-ве являются внедрение машин на погрузке и разгрузке цемента, на штукатурных, малярных и сантехнич. работах, осуществление комплексной М. п. в стр-ве и промышленности строительных материалов.

На транспорте М.п. определяется спецификой транспортных средств. На жел. дорогах М. п. достигается применением прогрессивных средств тяги (электрической и тепловозной), увеличением мощности локомотивов (с соответствующим ростом массы поездов и скорости их движения), использованием большегрузных и саморазгружающихся вагонов, оборудованием ж.-д. линий автоблокировкой, диспетчерской централизацией и т. д. Возрастает уровень механизации погрузочно-разгрузочных работ на основе использования грузоподъёмных и транспортирующих машин на жел. дорогах и подъездных путях пром. предприятий. Если в 1960 на грузовых дворах магистральных жел. дорог было выполнено комплексно-механизир. способом 50% общего объёма погрузочно-разгрузочных работ, то в 1972 этот показатель механизации составил 84 %. Дальнейшее развитие получает механизация автомобильных перевозок. В парке автомобилей увеличивается удельный вес автомобилей большой грузоподъёмности и автопоездов. Применение автокранов, машин с грузоподъёмным бортом, полуприцепов-контейнеровозов, саморазгружающихся автопоездов-металловозов позволит механизировать погрузочно-раэ-грузочные работы в ряде отраслей. Высокого уровня достигла М. п. наводном транспорте. В составе морского и речного флотов к 1972 насчитывалось более 90% дизель-электроходов и теплоходов, включая сухогрузные и нефтеналивные суда, оборудованные новейшими навига-ционно-штурманскими приборами. Морские и речные порты располагают такими средствами механизации, как портальные краны, электропогрузчики, спец. трюмные машины, плавучие перегружатели и др. Св. 90% всего объёма грузов в морских портах перерабатывается комплексно-механизир. способом. На речном транспорте с применением механизации выполняется 99% погрузочно-разгрузочных работ. Предполагается значит, расширение пропускной способности морских и речных портов, создание спец. высокомеханизир. перегрузочных комплексов для погрузки и выгрузки контейнеров, навалочных и лесных грузов. В связи с повышением в топливном балансе страны доли жидкого и газообразного топлива высокими темпами развивается полностью механизир. трубопроводный транспорт для нефти (см. раздел Нефтедобыча), нефтепродуктов и природного газа. Протяжённость нефтепроводов в СССР в 1973 составила 42,9 тыс. км, газопроводов - св. 70 тыс. км. Введён в эксплуатацию самый большой в мире нефтепровод "Дружбам из СССР в страны социалистического содружества.

В сельском хозяйствеМ.п. является одной из важнейших проблем в деле повышения эффективности произ-ва и улучшения условий труда. Продуктивность с. х-ва, наряду с селекцией, химизацией и влагорегулировани-ем, определяется уровнем механизации всех видов сельскохозяйств. работ. В 1972 энергетич. мощности с. х-ва составили примерно 265 млн. кет (362 млн. л. с.), из них на долю механич. двигателей приходилось св. 99%. Энерговооружённость труда в 1973 составила 10,3 кет (14 л. с.) на 1 работника. Парк с.-х. машин насчитывал в 1973 св. 2,1 млн. тракторов, более 670 тыс. зерноуборочных комбайнов, ок. 1,3 млн. грузовых автомобилей, св. 40 тыс. хлопкоуборочных машин. Высокий уровень механизации достигнут в колхозах и совхозах на основных полевых работах (пахота, сев зерновых, посадка картофеля, хлопчатника и сахарной свёклы, уборка зерновых, чая, силосных культур и т. п.), на междурядной обработке сахарной свёклы, хлопчатника, при очистке зерна, уборке комбайнами кукурузы на зерно, погрузке зерна при вывозке с токов и др. В то же время сев и посадка овощей в 1972 были механизированы лишь на 72%, стогование сена на 74% , погрузка картофеля на 37% , раздача кормов на фермах крупного рогатого скота на 17%, на свиноводческих фермах на 39%. Колхозы и совхозы будут оснащаться тракторами повышенной мощности, высокопроизводит. зерновыми комбайнами, широкозахватными и многорядными машинами, а также комбинир. машинами, выполняющими за один проход неск. операций. Значительно увеличивается поставка для с. х-ва землеройной и мелиоративной техники, автомобилей повышенной проходимости и грузоподъёмности, автосамосвалов, автомобильных и тракторных прицепов, специализированного автотранспорта. В животноводстве и птицеводстве тенденция развития заключается ,в создании крупных специализированных ферм промышленного типа, внедрении электромашинной технологии, применении поточных технологических линий (доение и первичная обработка молока, приготовление и раздача кормов и др.). В лесной промышленности М. п. также направлена в первую очередь на облегчение труда на тяжёлых и трудоёмких лесозаготовит. работах (см. Лесозаготовительное оборудование). Наиболее механизированы такие процессы, как валка леса, подвозка древесины к верхним складам и вывозка её. На лесозаготовит. предприятиях к 1973 имелось св. 72 тыс. тракторов разных типов, св. 35 тыс. автомобилей, 1,6 тыс, тепловозов; различные машины и механизмы использовались для валки леса, окорки брёвен, погрузки, трелёвки и вывозки древесины и т. п. Объём механизир. работ составляет от общего объёма выполненных работ по валке леса 99%, подвозке древесины к верхним складам - 98%; вывозка древесины полностью механизирована. На валке деревьев применение получили гидроклинья, электро- и бензопилы, управляемые одним человеком и позволяющие спиливать деревья со стволами диаметром до 1 м. Созданы машины для бесчокерной трелёвки леса. Для перевозки леса к ж.-д. транспорту применяются мощные автолесовозы со спец. прицепами. Разработаны высокопроизводит.полуавтоматич. линии для разделки хлыстов, машины, комплексно выполняющие валку деревьев, обрезку сучьев, разделку древесины и формирование пакетов. 75% всей древесины направляется на переработку, используется для произ-ва мебели, как строит, материал и сырьё для целлюлозно-бумажной промышленности.

В лёгкой и пищевой промышленности М. п. направлена на облегчение трудоёмких и утомительных операций, на к-рых используется в основном труд женщин. М. п. в лёгкой пром-сти связана с организацией новых видов произ-ва из вновь создаваемых материалов и сырья, а также с расширением и быстрой сменяемостью ассортимента выпускаемой продукции. Лёгкая пром-сть оснащена механизир. поточными линиями, располагает почти 500 тыс. единиц ав-томатич. и полуавтоматич. оборудования. В пром-сти работают комплексно-меха-низир. участки, цехи, целые предприятия. На предприятиях устанавливаются высо-копроизводит. чесальные станки, ленточные машины с высокой скоростью выпуска, прядильно-крутильные и пневмоме-ханич. прядильные станки, автоматич. ткацкие станки взамен устаревших ме-ханич, и т. д.

В пищевой пром-сти внедряются механизир. и комплексно-механизир. линии по произ-ву хлеба и хлебобулочных изделий, тестоприготовит. агрегаты непрерывного и периодич. действия, поточные линии для произ-ва кондитерских изделий. Повышается уровень механизации в мясной пром-сти: вводятся в эксплуатацию конвейерные линии убоя и разделки скота, поточно-механизир. линии для обработки субпродуктов, произ-ва полуфабрикатов, изготовления колбас, пельменей, котлет и пр., внедряются системы
комплексной механизации и автоматизации цехов-холодильников. Рыбная пром-сть пополняется судами, оснащёнными механизир. линиями обработки рыбы, обеспечивающими комплексную переработку улова и полное использование отходов для произ-ва кормовой муки.

В бытовом обслуживании М. п. направлена на оснащение средствами механизации предприятий службы быта и использование в домашних условиях различных машин, приборов и приспособлений, заменяющих ручной труд при обработке продуктов и приготовлении пищи, стирке и глаженье белья, уборке помещений и пр. (см. Коммунальные машины).

Дальнейшее развитие и совершенствование средств М. п. связано с использованием технич. достижений и науч. открытий на основе развития естеств. наук. Наиболее важными направлениями науч.-технич. прогресса и создания новых средств труда являются: дальнейшее развитие синтеза, прямое преобразование энергии, глубина переработки сырья и защита окружающей среды. В условиях ускорения науч.-технич. прогресса решающее значение для обеспечения роста производительности труда приобретает создание условий для своевременной модернизации средств произ-ва с учётом сокращения сроков амортизации и обновления активной части осн. фондов. Всё это вызывает необходимость значительного расширения номенклатуры произ-ва машин, аппаратов и приборов, повышения их единичной мощности, комплексной механизации и уровня автоматич. управления производств, процессами, углубления специализации произ-ва, нормализации узлов и деталей машин, а также развития их стандартизации. Важная роль отводится решению задачи комплексной механизации с.-х. производства и сопряжённых с ним отраслей по переработке с.-х. продукции, произ-ву минеральных удобрений и средств защиты, а также орошению и мелиорации. Дальнейшее расширение сферы материального произ-ва и внеш. экономич. связей во многом зависит от развития всех видов транспорта, его обслуживания и стр-ва дорог, что вызывает необходимость совершенствования соответствующих средств произ-ва. Дальнейшее развитие технич. средств М. п. предполагает следующее: а) создание новых высокоэффективных машин, механизмов, установок, в к-рых , широко использованы достижения совр. науки и техники, особенно машин и аппаратов непрерывного действия, машин-комбайнов и автоматов; проектирование средств М. п. с повышенными рабочими и трансп. скоростями; б) увеличение единичной мощности машин при снижении их удельной материало-ёмкости и энергоёмкости с сохранением для подвижных машин-орудий манёвренности и проходимости; в) создание для различных отраслей народного х-ва унифицированных базовых машин с комплектами сменного навесного и полуприцепного оборудования для каждого типоразмера, получение широкой номенклатуры мобильных машин-орудий, особенно погрузочно-разгрузочных, строительных, трансп., дорожных и др.; г) применение новых высококачеств. материалов (легированных сталей, лёгких сплавов, пластмасс, новых высокопрочных материалов), гидравлич. и электрич. бесступенчатых передач с широким диапазоном регулирования скоростей, автоматич. устройств для сохранения оптимальных режимов работы, дистанционного и программного управления; д) улучшение условий работы обслуживающего персонала путём звукоизоляции рабочих помещений, их кондиционирования и др.; е) применение средств механизации учёта количества и качества продукции в условиях комплексной механизации и автоматизации производственных процессов.

Лит.: Маркс К., Капитал, т. 1, гл. 13-Машины и крупная промышленность, Маркс К. и Энгельс Ф., Соч., 2 изд., т. 23; Ленин В. И., По поводу так называемого вопроса о рынках, Поли. собр. соч., 5 изд., т. 1; е г о же, Развитие капитализма в России, там же, т. 3; е г о же, Империализм, как высшая стадия капитализма, там же, т. 27; Материалы XXIV съезда КПСС, М., 1971; Материалы XXIII съезда КПСС, М., 1966; Народное хозяйство СССР. 1922-1972. Юбилейный статистический ежегодник, М., 1972; Ефимов А. Н., Советская индустрия, М., 1967; Пути развития техники в СССР [1917-1967], М., 1967; История техники, М., 1962; Эффективность комплексного развития техники в промышленности, М., 1966; Механизация и автоматизация производства, М., 1971; Современная научно-техническая революция. Историческое исследование, 2 изд., М., 1970; Очерки развития техники в СССР (в 5 кн.), кн. 1 - 4, М., 1968-71; Эффективность механизации и автоматизации труда, Л., 1972.

В. Д. Лебедев, Д. П. Воробьёв.

"МЕХАНИЗАЦИЯ СТРОИТЕЛЬСТВА", ежемесячный научно-технич. и производств, журнал Госстроя СССР и Центр, правления научно-технич. об-ва стройин-дустрии. Издаётся в Москве с 1939 (с перерывом в 1941-45). Публикует материалы по комплексной механизации и автоматизации строит, процессов, эксплуатации и ремонту строит, и дорожных машин, механовооружённости строит, орг-ций, о средствах специализиров. транспорта и организации трансп. перевозок. В журнале освещаются передовой опыт строек, новые методы планирования и экономич. стимулирования в стр-ве, изобретательская и рационализаторская деятельность, зарубежный опыт и др. Тираж (1974) 22 тыс. экз.

МЕХАНИЗАЦИЯ УЧЁТА, применение в бухгалтерском, статистич. и оперативном учёте предприятий, орг-ций и учреждений средств вычислит, техники для выполнения технич. операций, связанных с учётом труда и заработной платы, учётом продукции, доходов и расходов, при составлении отчётных и вспомогат. сводок и т. п. Технич. операции являются обычно массовыми и по своей трудоёмкости занимают до 70-75% всех работ по учёту. М. у. значительно повышает производительность труда персонала, занятого учётными работами, ускоряет сроки получения нужной информации и повышает её точность. Начало механизации учётных работ связано с развитием в конце 19 в. техники механизиров. счёта, с появлением перфораторов, табуляторов, арифмометров и др. Применение простейших счётно-решающих устройств повысило производительность труда при суммировании в 2-3 раза, умножении и делении - в 5-6 раз, а при группировке учётных данных - в 15-20 раз, что позволило значительно ускорить операции по обработке экономич. информации и в конечном счёте способствовало улучшению управления произ-вом.

В СССР М. у. практич. развитие получила в 30-х гг. 20 в., когда была создана отрасль отечественного вычислит, машиностроения. Начиная с 1949 М. у. развивается в направлении комплексной механизации работ, связанных с различными формами учёта и отчётности. Для этой цели на предприятиях и в учреждениях в зависимости от объёма учётных работ создаются машиносчётные бюро (МСБ), машиносчётные станции (МСС) или вычислительные центры (ВЦ). Комплексная М. у. предусматривает замену ручного труда машинным не только на наиболее трудоёмких операциях учёта, но и на всех остальных участках от первичной обработки документов до составления бухгалтерского баланса и сводных статистич. отчётов. Наиболее сложная проблема М. у.- подготовка исходных данных. Она решается при комплексной автоматизации учёта; при этом первичные документы, доступные для непо-средств. восприятия человеком, одновременно являются машинными носителями информации. Комплексная автоматизация учётных операций - высшая стадия М. у., она достигается в автоматизированных системах управления (АСУ).

Лит.: Исаков В. И., Королёв М. А., Основы проектирования механизации учётно-плановых работ, М., 1965; Фельдман Л. С., Застенкер Г. С., Организация и эксплуатация машино-счётных станций и бюро, 2 изд., М., 1972.

Д. П. Брунштейн.

МЕХАНИЗИРОВАННАЯ КАРТОТЕКА, устройство для хранения карточек, в к-ром, в отличие от обычных картотек, процесс поиска карточек механизирован. В М. к. носители информации (карточки) размещаются в коробках (кассетах) или непосредственно на полках, как правило, в вертикальном положении. При составлении картотеки карточки группируют по к.-л. признаку (по алфавиту, адресам, виду информации, по характеру данных, заносимых на карточку, и т. п.) и каждой группе присваивается свой индекс (код). При поиске нужной карты оператор набирает (задаёт) на пульте управления её индекс или индекс её группы. Указание оператора преобразуется в сигнал управления электроприводом с указанием направления и шага перемещения полок. В блок управления М. к. входит "избирательное устройство", обеспечивающее автоматич. подачу нужной полки к оператору по кратчайшему пути, что особенно важно при большом объёме картотеки. Количество хранимых карточек и объём содержащейся в них информации зависят от формата карточек, размеров коробок (кассет), числа полок и конструкции М. к. Различают М. к. барабанного и элеваторного типов. Как правило, ёмкость барабанных М. к. от 10 тыс. до 50 тыс. карт (число полок от 3 до 8), элеваторных - от 20 тыс. до 500 тыс. карт (6-30 полок); формат карт от 70 X 100 мм до 200 X X 300 мм.

Наибольшее распространение получили барабанные М. к., в к-рых полки с картами свободно подвешены между двумя дисками (колёсами), имеющими общую ось, связанную с электроприводом (рис.). Диаметр барабана от 500 до 800 мм\ ср. время полного оборота барабана 16-20 сек. Барабан с полками (кассетами) размещается в корпусе с откидной крышкой, служащей одновременно и рабочим столом; при необходимости М. к. укомплектовывают приставным столом. М. к. применяются в конторах пром. предприятий, отделах научно-технич. информации ин-тов и орг-ций, регистратурах и т. п. М. к. значительно упрощает работу с карточками (к любой из них оператор имеет доступ непосредственно с рабочего места) и в 1,5-2 раза ускоряет процесс поиска нужной карты.

Механизированная картотека барабанного типа: а - внешний вид; б - схема устройства; / - барабан; 2 - карточки; 3 ~ пульт управления; 4 - блок управления; 5 - рабочая доска (стол); 6 -электродвигатель привода; 7-полка (кассета).

Г. М. Белоусов.

МЕХАНИЗИРОВАННАЯ КРЕПЬ, горная крепь длинной очистной выработки (лавы), установка, разгрузка и перемещение к-рой вслед за подвигающимся забоем осуществляются механизиров. способом, без разборки её на составляющие элементы. М. к. применяется гл. обр. на угольных шахтах (в СССР в работе ок. 800 комплектов, 1973); вместе с горным комбайном, забойным конвейером и крепями сопряжения лавы со штреками М. к. образуют выемочные комплексы или агрегаты, обеспечивающие механизацию всех осн. рабочих процессов в очистном забое. Создание конструкций М. к. совр. вида относится к сер. 50-х гг. См. Крепь горная.

Схемы механизированной крепи; а - поддерживающего типа; б - оградительного типа; в - поддерживающе-огра-дительного типа; г - оградительно-поддерживающего типа; 1- опорные элементы-стойки; 2- перекрытие; 3- основание; 4- защитное ограждение; 5 - ограждающее перекрытие; 6 -
поддерживающий козырёк.

М. к. делят: по функциям взаимодействия с боковыми породами - на поддерживающие, оградительные, оградительно-поддерживающие и поддержива-юще-оградительные; по конструктивной схеме взаимодействия секций - на секционные, комплектные и агрегатиро-ванные. Крепи поддерживающего типа (рис. а) предназначены для предотвращения обрушения кровли в пределах рабочего пространства очистной выработки. Секции их состоят из перекрытия, от двух до шести опорных гидравлич. стоек, основания и одного или двух гидродомкратов передвижения. При-заоойная зона лавы поддерживается перекрытиями секции консольно. По длине перекрытие сплошное или состоит из двух и более звеньев, соединённых шарнирами, чем обеспечивается лучший контакт его с неровной поверхностью кровли. М. к. поддерживающего типа при меняют в основном на пластах мощностью до 2 м, реже - до 3,5 м. Крепи оградительного типа испытывают только нагрузку, передаваемую обрушенными породами, защищая рабочее пространство ограждающими перекрытиями (рис. 6). Эти крепи не нашли широкого распространения. Крепи оградительно-поддерживающего и поддерживающе-огра-дительного типов имеют элементы, выполняющие функции поддержания кровли и защиты рабочего пространства от обрушающихся пород. Крепи поддерживающе-оградительного типа (рис. в) поддерживают кровлю на большей ширине рабочего пространства, чем крепи оградительно-поддерживающего типа (рис. г); секция имеет 2-3 гидростойки, что обусловливает возможность применения её в лавах с труднообруша-ющейся основной кровлей при слабой непосредственной кровле. Оградительная часть выполняется в виде прочного наклонного перекрытия. Эти крепи применяют в большинстве случаев на пластах мощностью от 1,6 до 2,5 м; разрабатываются (1974) конструкции для пластов до 3,5 м. Секции крепи оградительно-поддерживающего типа имеют прочное наклонное ограждающее перекрытие и относительно короткий козырёк, поддерживающий кровлю на небольшой ширине у забоя с помощью одной стойки. Крепи применяют при легко обрушаемых основных и слабых породах непосредственной кровли на пластах мощностью 2-3,5 м. М. к., секции к-рых не имеют постоянных кинематич. связей между собой и с др. оборудованием лавы, наз. секционным и. Вследствие большой трудоёмкости передвижки и установки секционные крепи не нашли широкого применения. Комплектные крепи состоят из комплектов, включающих две и более кинематически связанных между собой секций. Комплекты крепи не имеют связей между собой. Секции агрегатированной крепи имеют постоянную кинематическую связь с базовым элементом очистного комплекса - ставом конвейера, направляющей рамой выемочной машины или специальным базовым элементом. Гидродомкратами передвижения снабжаются все или часть секций агрегатированной крепи. Наличие постоянной связи с базой и, как правило, направленное движение являются благоприятными предпосылками для дистанционного и автомати-зиров. управления всем комплексом оборудования очистного забоя. Агрегати-рованные крепи считаются наиболее перспективными. Управление гидроприводом и гидросистемой М. к. производится с кнопочных постов, устанавливаемых в лаве через 5-8 м или центрального пульта, расположенного в штреке. В СССР на пластах пологого падения нашли применение М. к.: поддерживающие М-87 и М-97; поддерживающе-оградительные МК и М-81; оградительно-поддерживающие ОМКТ-М и ОКП и оградительные КТУ. Внедряются М. к. для пластов наклонного (М-87ДН, КМ-127 и др.), а также крутого (АЩ, КГД-2, АНЩ, АКД и др.) падения. Наиболее разнообразны М. к. поддерживающего типа.

За рубежом развитие М. к. идёт по пути создания и совершенствования в основном крепей поддерживающего типа как в агрегатированном (крепи фирм "Галлик", "Даути" и др.- Великобритания), так и в комплектном ("Вестфа-лия", чКлекнер-Ферроматик" - ФРГ, "Карлтон" - Великобритания, "Саэ-Со-меми" - Франция, DVP-3 - ЧССР и др.) исполнении.

Совершенствование М. к. осуществляется по пути снижения их металлоёмкости и стоимости, повышения надёжности всех узлов, оптимизации параметров, создания конструкций, обеспечивающих в комплексе с выемочными и транспортными средствами полную автоматизацию процессов выемки, транспортирования угля, крепления и управления горным давлением в очистном забое и на сопряжении его с подготовит, выработками. Лит.: Справочник по креплению горных выработок, М., 1972.

В. В. Жуков.

МЕХАНИЗИРОВАННЫЕ ВОЙСКА, войска, состоящие из мотострелковых (механизированных), танковых, артиллерийских и др. частей и подразделений. Понятие "М. в" появилось в различных армиях к нач. 1930-х гг. В 1929 в СССР было создано Центр, управление механизации и моторизации РККА и сформирован первый опытный механизированный полк, развёрнутый в 1930 в первую механизированную бригаду в составе танкового, артиллерийского, разведыват. полков и подразделений обеспечения. Бригада имела 110 танков МС-1 и 27 орудий и предназначалась для исследования вопросов оперативно-тактич. применения и наиболее выгодных организац. форм механизированных соединений. В 1932 на базе этой бригады был создан первый в мире механизированный корпус - самостоят, оперативное соединение, включавшее 2 механизированные и одну стрел-ково-пулсметную бригады, отдельный зе~ нитно-артиллерийский дивизион и насчитывавшее св. 500 танков и 200 автомобилей. Название "М. в" было закреплено в 1932 во временном наставлении механизированных войск РККА, к-рое наз. ч Вождение и бой самостоятельных механизированных соединений>. К нач. 1936 имелось 4 механизированных корпуса, 6 отдельных бригад, а также 15 полков в кав. дивизиях. В 1937 Центр, управление механизации и моторизации РККА было переименовано в Автобронетанковое управление Красной Армии, а в дек. 1942 было образовано Управление командующего бронетанковыми и механизированными войсками. Во время Великой Отечеств, войны 1941-45 бронетанковые и механизированные войска стали осн. ударной силой сухопутных войск. К кон. 1943 в состав механизированного корпуса входили 3 механизированные и 1 танк, бригады, 1-2 самоходно-арт. полка, миномётный, зенитный, артиллерийский, истребительно-противотанковый артиллерийский полки, отдельный гвард. миномётный дивизион реактивной артиллерии и части обеспечения и обслуживания [всего 16369 чел., 246 танков и самоходно-арт. установок (Т-34-176, Т-70-21, САУ-49), 252 орудия и миномёта, св. 1,8 тыс. автомашин]. Механизированные соединения наряду с танковыми использовались для ввода в прорыв и развития успеха на большую глубину, для окружения и разгрома противника, преследования и выполнения др. задач. В мае 1954 бронетанковые и механизированные войска были переименованы в бронетанковые войска, в 1959 - в танковые войска. В 1957 стрелковые и механизированные дивизии были преобразованы в мотострелковые дивизии. В США, Франции, Турции и нек-рых др. странах механизированные дивизии входят в состав сухопутных войск (пехоты)

Л. Г. Бархударов.

МЕХАНИЗИРОВАННЫЙ ИНСТРУМЕНТ, ручные машины с встроенным двигателем. По виду питающей энергии М. и. может быть пневматич., электрич., гидравлическим. Распространение получили такие ручные машины, как сверлильные, шлифовальные, резьбозавёртываю-щие, различные виды молотков, пил и др.

МЕХАНИЗМ (от греч. mechane - машина), система тел, предназначенная для преобразования движения одного или неск. тел в требуемые движения др. тел. М. составляют основу большинства машин, применяются во мн. приборах, аппаратах и технич. устройствах. Твёрдое тело, входящее в состав М., называемое звеном, может состоять из одной или неск. неподвижно соединённых деталей (отдельно изготовленных частей). Соединение двух соприкасающихся звеньев, допускающее их относит, движение, наз. кинематической парой (см. также Кинематика механизмов). Наиболее распространённые кинематич. пары: вращательная (шарнир), поступательная (ползун и направляющая), винтовая (винт и гайка), сферическая (шаровой шарнир). Если в преобразовании движения, кроме твёрдых тел (звеньев), участвуют жидкие или газообразные тела, то М. наз. соответственно гидравлическим или пневматическим.

Для изучения движения звеньев М. составляется кинематич. схема, на к-рой указываются данные, необходимые для определения положения звеньев. На рис. 1 показан чертёж М. двигателя внутр. сгорания и его кинематич. схема. На кинематич. схеме кривошип и шатун условно представлены в виде отрезков, соединяющих центры шарниров, ползун - в виде прямоугольника, стойка О - в виде отрезка со штриховкой, изображающего направляющую ползуна, и треугольника с шарниром, имеющим неподвижную ось вращения. Для определения по кинематич. схеме положения всех подвижных звеньев М. достаточно знать положение одного звена. Звено, положение к-рого для любого момента времени задано, наз. начальным. При исследовании М. число начальных звеньев должно совпадать с числом его степеней свободы, т. е. с числом независимых переменных, определяющих положения всех звеньев. М. двигателя внутр. сгорания имеет одну степень свободы; в качестве независимой переменной для М. можно принять угол ф. В шарнирном М. с двумя степенями свободы (рис. 2) независимыми переменными могут быть углы ф1 и ф2, или ф1 и фз, или, наконец, ф3 и ф3.

Рис. 1. Чертёж (а) и кинематическая схема (б) механизма двигателя внутреннего сгорания; 1 - коленчатый вал (кривошип); 2 - шатун; 3 -ползун; О - стойка; ф - независимая переменная, угол поворота кривошипа.

Рис. 2. Схема шарнирного механизма с двумя степенями свободы (с двумя начальными звеньями).

М. применяется в тех случаях, когда нельзя получить непосредственно требуемое движение тел и возникает необходимость в преобразовании движения. Напр., ротор электродвигателя и подшипники, в к-рых он вращается, не образуют М., т. к. в этом случае электроэнергия непосредственно преобразуется в требуемое движение без к.-л. промежуточного преобразования механич. движения. М. появляется только тогда, когда требуется уменьшить угловую скорость выходного вала, т. е. устанавливается понижающая зубчатая передача. М. двигателя внутр. сгорания преобразует прямолинейное движение поршня во вращат. движение коленчатого вала. М., предназначенный для преобразования вращательных или прямолинейных движений во вращательные (и наоборот), наз. передаточным М., или передачей. В зависимости от вида звеньев различают зубчатые, рычажные, фрикционные, цепные, ремённые передачи. К этому же типу М. относятся гидро- и пневмопередачи. М., служащий для воспроизведения движения нек-рой точки по заданной траектории, наз. направляющим. Наибольшее распространение имеют М., воспроизводящие движение по прямой линии (прямолинейно-направляющие) и по дуге окружности (круговые направляющие). М., предназначенные для сложного перемещения твёрдого тела в пространстве или в плоскости, наз. перемещающими.

В 60 - нач. 70-х гг. 20 в. появились новые М., созданные для выполнения задач, связанных с космич. техникой (М. для передачи вращения в вакууме, М. пространственной ориентации), медицинской техники (регулируемые аппараты, биопротезы), для работы в средах, недоступных или опасных для человека (подводные глубины, космос, атомные реакторы). Для выполнения этих работ нашли применение манипуляторы, основу к-рых составляют пространственные М. со мн. степенями свободы. Развитие манипуляторов привело к созданию пром. роботов, позволяющих автоматизировать процессы обработки, монтажа и сборки изделий. См. также Машин и механизмов теория.

Лит.: Кожевников С. Н., Есипенк о Я. И., Ра скин Я. М., Механизмы, 3 изд., М., 1965; Артоболевский И. И., Механизмы в современной технике, т. 1 - 2, М., 1970-71.

И. И. Артоболевский, Н. И. Левитский.

МЕХАНИЗМЫ РЕЧИ, условное название системы психофизиологич. предпосылок, позволяющих человеку строить осмысленные высказывания и понимать чужую речь. В основе М. р. лежат функциональные физиологич. системы, складывающиеся у человека в процессе его индивидуального развития под активным воздействием предметной деятельности и общения с др. людьми и невозможные без нек-рых врождённых способностей и умений (напр., правильной координации артикуляции, слогообразования и дыхания). Принцип системной локализации речевых функций в коре больших полушарий головного мозга обеспечивает возможность различной психофизиологич. обусловленности одних и тех же (по языковой структуре) речевых высказываний. М. р. изучаются физиологией речи, психологией речи, а в их отношении к языковой структуре высказываний - психолингвистикой и нейролингвистикой.

Лит.: Выготский Л. С., Избранные психологические исследования, М., 1956; Жинкин Н. И., Механизмы речи, М., 1958; Л у р и я А. Р., Мозг и психические процессы, т. 1-2, М., 1963-70; его же, Высшие корковые функции человека, 2 изд., М., 1969; Леонтьев А. А., Психолингвистические единицы и порождение речевого высказывания, М., 1969.

А. А. Леонтьев.

МЕХАНИКА [от греч. mechanike (tech-пё) - наука о машинах, искусство построения машин], наука о механич. движении материальных тел и происходящих при этом взаимодействиях между телами. Под механич. движением понимают изменение с течением времени взаимного положения тел или их частиц в пространстве. Примерами таких движений, изучаемых методами М., являются; в природе - движения небесных тел, колебания земной коры, возд. и мор. течения, тепловое движение молекул и т. п., а в технике - движения различных летат. аппаратов и трансп. средств, частей всевозможных двигателей, машин и механизмов, деформации элементов различных конструкций и сооружений, движения жидкостей и газов и мн. др.

Рассматриваемые в М. взаимодействия представляют собой те действия тел друг на друга, результатом к-рых являются изменения механич. движения этих тел. Их примерами могут быть притяжения тел по закону всемирного тяготения, взаимные давления соприкасающихся тел, воздействия частиц жидкости или газа друг на друга и на движущиеся в них тела и др. Обычно под М. понимают т. н. классич. М., в основе к-рой лежат Ньютона законы механики и предметом к-рой является изучение движения любых материальных тел (кроме элементарных частиц), совершаемого со скоростями, малыми по сравнению со скоростью света. Движение тел со скоростями порядка скорости света рассматривается в относительности теории, а внутриатомные явления и движение элементарных частиц изучаются в квантовой механике.

При изучении движения материальных тел в М. вводят ряд абстрактных понятий, отражающих те или иные свойства реальных тел; таковы: 1) Материальная точка - объект пренебрежимо малых размеров, имеющий массу; это понятие применимо, если в изучаемом движении можно пренебречь размерами тела по сравнению с расстояниями, проходимыми его точками. 2) Абсолютно твёрдое тело - тело, расстояние между двумя любыми точками к-рого всегда остаётся неизменным; это понятие применимо, когда можно пренебречь деформацией тела. 3) Сплошная изменяемая среда; это понятие применимо, когда при изучении движения изменяемой среды (деформируемого тела, жидкости, газа) можно пренебречь молекулярной структурой среды.

При изучении сплошных сред прибегают к след, абстракциям, отражающим при данных условиях наиболее существ, свойства соответствующих реальных тел: идеально упругое тело, пластич. тело, идеальная жидкость, вязкая жидкость, идеальный газ и др. В соответствии с этим М. разделяют на: М. материальной точки, М. системы материальных точек, М. абсолютно твёрдого тела и М. сплошной среды; последняя, в свою очередь, подразделяется на теорию упругости, теорию пластичности, гидромеханику, аэромеханику, газовую динамику и др. В каждом из этих разделов в соответствии с характером решаемых задач выделяют: статику - учение о равновесии тел под действием сил, кинематику -учение о геометрич. свойствах движения тел и динамику - учение о движении тел под действием сил. В динамике рассматриваются 2 осн. задачи: нахождение сил, под действием к-рых может происходить данное движение тела, и определение движения тела, когда известны действующие на него силы.

Для решения задач М. широко пользуются всевозможными математич. методами, многие из к-рых обязаны М. самим своим возникновением и развитием. Изучение осн. законов и принципов, к-рым подчиняется механич. движение тел, и вытекающих из этих законов и принципов общих теорем и ур-ний составляет содержание т. н. общей, или теоретической, М. Разделами М., имеющими важное самостоят, значение, являются также теория колебаний, теория устойчивости равновесия и устойчивости движения, теория гироскопа, механика тел переменной массы, теория автоматич. регулирования (см. Автоматическое управление), теория удара. Важное место в М., особенно в М. сплошных сред, занимают экспериментальные исследования, проводимые с помощью разнообразных механич., оптич., элект-рич. и др. физич. методов и приборов.

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соответств. обобщениях находит приложение в оптике, статистич. физике, квантовой М., электродинамике, теории относительности и др. (см., напр., Действие, Лагранжа функция, Лагранжа уравнения механики, Механики уравнения канонические, Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, аэродинамики разреженных газов, магнитной гидродинамики и др. одновременно используются методы и ур-ния как теоретич. М., так и соответственно термодинамики, молекулярной физики, теории электричества и др. Важное значение М. имеет для мн. разделов астрономии, особенно для небесной механики.

Часть М., непосредственно связанную с техникой, составляют многочисленные общетехнич. и спец. дисциплины, такие, как гидравлика, сопротивление материалов, кинематика механизмов, динамика машин и механизмов, теория гироскопических устройств, внешняя баллистика, динамика ракет, теория движения различных наземных, морских и воздушных трансп. средств, теория регулирования и управления движением различных объектов, строит. М., ряд разделов технологии и мн. др. Все эти дисциплины пользуются ур-ниями и методами теоретич. М. Т. о., М. является одной из науч. основ мн. областей совр. техники.

Основные понятия и методы механики. Осн. кинематич. мерами движения в М. являются: для точки-её скорость и ускорение, а для твёрдого тела - скорость и ускорение постулат, движения и угловая скорость и угловое ускорение вращат. движения тела. Кинематич. состояние деформируемого твёрдого тела характеризуется относит, удлинениями и сдвигами его частиц; совокупность этих величин определяет т. н. тензор деформаций. Для жидкостей и газов кинематич. состояние характеризуется тензором скоростей деформаций; кроме того, при изучении поля скоростей движущейся жидкости пользуются понятием о вихре, характеризующем вращение частицы.

Осн. мерой механич. взаимодействия материальных тел в М. является сила. Одновременно в М. широко пользуются понятием момента силы относительно точки и относительно оси.В М. сплошной среды силы задаются их поверхностным или объёмным распределением, т. е. отношением величины силы к площади поверхности (для поверхностных сил) или к объёму (для массовых сил), на к-рые соответствующая сила действует. Возникающие в сплошной среде внутр. напряжения характеризуются в каждой точке среды касательными и нормальными напряжениями, совокупность к-рых представляет собой величину, называемую тензором напряжений. Среднее арифметическое трёх нормальных напряжений, взятое с обратным знаком, определяет величину, называемую давлением в данной точке среды.

Помимо действующих сил, движение тела зависит от степени его инертности, т. е. от того, насколько быстро оно изменяет своё движение под действием приложенных сил. Для материальной точки мерой инертности является величина, называемая массой точки. Инертность материального тела зависит не только от его общей массы, но и от распределения масс в теле, к-рое характеризуется положением центра масс и величинами, называемыми осевыми и центробежными моментами инерции; совокупность этих величин определяет т. н. тензор инерций. Инертность жидкости или газа характеризуется их плотностью.

В основе М. лежат законы Ньютона. Первые два справедливы по отношению к т. н. инерциалъной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим - для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются ещё законы, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таков Гука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. Пластичности теория и Реология.

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рыми являются количество движения, момент количества движения (или кинетич. момент) и кинетическая энергия, и о мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают теоремы об изменении количества движения, момента количества движения и кинетич. энергии, называемые общими теоремами динамики. Эти теоремы и вытекающие из них законы сохранения количества движения, момента количества движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.

Эффективные методы изучения равновесия и движения несвободной системы материальных точек, т. е. системы, на движение к-рой налагаются заданные наперёд ограничения, называемые связями механическими, дают вариационные принципы механики, в частности возможных перемещений принцип, наименьшего действия принцип и др., а также Д'Аламбера принцип. При решении задач М. широко используются вытекающие из её законов или принципов дифференц. ур-ния движения материальной точки, твёрдого тела и системы материальных точек, в частности ур-ния Лагранжа, канонич. ур-ния, ур-ние Гамильтона-Якоби и др., а в М. сплошной среды - соответствующие ур-ния равновесия или движения этой среды, ур-ние неразрывности (сплошности) среды и ур-ние энергии.

Исторический очерк. М. - одна из древнейших наук. Её возникновение и развитие неразрывно связаны с развитием производит, сил общества, нуждами практики. Раньше др. разделов М. под влиянием запросов гл. обр. строит, техники начинает развиваться статика. Можно полагать, что элементарные сведения о статике (свойства простейших машин) были известны за неск. тысяч лет до н. э., о чём косвенно свидетельствуют остатки древних вавилонских и егип. построек; но прямых доказательств этого не сохранилось. К первым дошедшим до нас трактатам по М., появившимся в Древней Греции, относятся натурфилос. сочинения Аристотеля (4 в. до н. э.), к-рый ввёл в науку сам термин М.к Из этих соч. следует, что в то время были известны законы сложения и уравновешивания сил, приложенных в одной, точке и действующих вдоль одной и той же прямой, свойства простейших машин и закон равновесия рычага. Науч. основы статики разработал Архимед (3 в. до н.э.).

Его труды содержат строгую теорию рычага, понятие о статич. моменте, правило сложения параллельных сил, учение о равновесии подвешенных тел и о центре тяжести, начала гидростатики. Дальнейший существенный вклад в исследования по статике, приведший к установлению правила параллелограмма сил и развитию понятия о моменте силы, сделали И. Неморарий (ок. 13 в.), Леонардо да Винчи (15 в.), голл. учёный Стевин (16 в.) и особенно - франц. учёный П. Ва-риньон (17 в.), завершивший эти исследования построением статики на основе правил сложения и разложения сил и доказанной им теоремы о моменте равнодействующей. Последним этапом в развитии геометрич. статики явилась разработка франц. учёным Л. Пуансо теории пар сил и построение статики на её основе (1804). Др. направление в статике, основывавшееся на принципе возможных перемещений, развивалось в тесной связи с учением о движении.

Проблема изучения движения также возникла в глубокой древности. Решения простейших кинематич. задач о сложении движений содержатся уже в соч. Аристотеля и в астрономич. теориях древних греков, особенно в теории эпициклов, завершённой Птолемеем (2 в. н. э.). Однако динамич. учение Аристотеля, господствовавшее почти до 17 в., исходило из ошибочных представлений о том, что движущееся тело всегда находится под действием нек-рой силы (для брошенного тела, напр., это подталкивающая сила воздуха, стремящегося занять место, освобождаемое телом; возможность существования вакуума при этом отрицалась), что скорость падающего тела пропорциональна его весу, и т. п.

Периодом создания науч. основ динамики, а с ней и всей М. явился 17 век. Уже в 15-16 вв. в странах Зап. и Центр. Европы начинают развиваться бурж. отношения, что привело к значит, развитию ремёсел, торг, мореплавания и воен. дела (совершенствование огнестрельного оружия). Это поставило перед наукой ряд важных проблем: исследование полёта снарядов, удара тел, прочности больших кораблей, колебаний маятника (в связи с созданием часов) и др. Но найти их решение, требовавшее развития динамики, можно было только разрушив ошибочные положения продолжавшего господствовать учения Аристотеля. Первый важный шаг в этом направлении сделал Н. Коперник (16 в.), учение к-рого оказало огромное влияние на развитие всего естествознания и дало М. понятия об относительности движения и о необходимости при его изучении выбора системы отсчёта. Следующим шагом было открытие И. Кеплером опытным путём кинематич. законов движения планет (нач. 17 в.). Окончательно ошибочные положения ари-стотелевой динамики опроверг Г. Галилей, заложивший науч. основы совр. М. Он дал первое верное решение задачи о движении тела под действием силы, найдя экспериментально закон равноускоренного падения тел в вакууме. Галилей установил два осн. положения М.-принцип относительности классич. М. и закон инерции, к-рый он, правда, высказал лишь для случая движения вдоль горизонтальной плоскости, но применял в своих исследованиях в полной общности. Он первый нашёл, что в вакууме траекторией тела, брошенного под углом к горизонту, является парабола, применив при этом идею сложения движений: горизонтального (по инерции) и вертикального (ускоренного). Открыв изохронность малых колебаний маятника, он положил начало теории колебаний. Исследуя условия равновесия простых машин И решая нек-рые задачи гидростатики, Галилей использует сформулированное им в общем виде т. н. золотое правило статики - начальную форму принципа возможных перемещений. Он же первый исследовал прочность балок, чем положил начало науке о сопротивлении материалов. Важная заслуга Галилея - планомерное введение в М. науч. эксперимента.

Современник Галилея Р. Декарт в основу своих исследований по М. положил сформулированный в общем виде закон инерции и высказанный им (но не в векторной форме) закон сохранения количества движения; он же ввёл понятие импульса силы. Дальнейший крупный шаг в развитии М. был сделан голл. учёным X. Гюйгенсом. Ему принадлежит решение ряда важнейших для того времени задач динамики - исследование движения точки по окружности, колебаний фи-зич. маятника, законов упругого удара тел. При этом он впервые ввёл понятия центростремительной и центробежкой силы и понятие о моменте инерции (сам термин принадлежит Л. Эйлеру), а также применил принцип, по существу эквивалентный закону сохранения механич. энергии, общее математич. выражение к-рого дал впоследствии Г. Гелъмгольц.

Заслуга окончат, формулировки осн. законов М. принадлежит И. Ньютону (1687). Завершив исследования своих предшественников, Ньютон обобщил понятие силы и ввёл в М. понятие о массе. Сформулированный им основной (второй) закон М. позволил Ньютону успешно разрешить большое число задач, относящихся гл. обр. к небесной М., в основу к-рой был положен открытый им же закон всемирного тяготения. Он формулирует и 3-й из осн. законов М.- закон равенства действия и противодействия, лежащий в основе М. системы материальных точек. Исследованиями Ньютона завершается создание основ классич. М. К тому же периоду относится установление двух исходных положений М. сплошной среды. Ньютон, исследовавший сопротивление жидкости движущимися в ней телами, открыл осн. закон внутр. трения в жидкостях и газах, а англ, учёный Р. Гук экспериментально установил закон, выражающий зависимость между напряжениями и деформациями в упругом теле.

В 18 в. интенсивно развивались общие аналитич. методы решения задач М. материальной точки, системы точек и твёрдого тела, а также небесной М., основывавшиеся на использовании открытого Ньютоном и Г. В. Лейбницем исчисления бесконечно малых. Гл. заслуга в применении этого исчисления для решения задач М. принадлежит Л. Эйлеру. Он разработал аналитич. методы решения задач динамики материальной точки, развил теорию моментов инерции и заложил основы М. твёрдого тела. Ему принадлежат также первые исследования по теории корабля, теории устойчивости упругих стержней, теории турбин и решение ряда прикладных задач кинематики. Вкладом в развитие прикладной М. явилось установление франц. учёными Г. Амонтоном и Ш. Кулоном экспериментальных законов трения.

Важным этапом развития М. было создание динамики несвободных меха-нич. систем. Исходными для решения этой проблемы явились принцип возможных перемещений, выражающий общее условие равновесия механич. системы, развитию и обобщению к-рого в 18 в. были посвящены исследования И. Бернулли, Л. Карно, Ж. Фурье, Ж. Л. Лагранжа и др., и принцип, высказанный в наиболее общей форме Ж. Д'Аламбером и носящий его имя. Используя эти два принципа, Лагранж завершил разработку аналитич. методов решения задач динамики свободной и несвободной механич. системы и получил ур-ния движения системы в обобщённых координатах, названные его именем. Им же были разработаны основы совр. теории колебаний. Др. направление в решении задач М. исходило из принципа наименьшего действия в том его виде, к-рый для одной точки высказал П. Мопертюи и развил Эйлер, а на случай механич. системы обобщил Лагранж. Небесная М. получила значит, развитие благодаря трудам Эйлера, Д' Аламбера, Лагранжа и особенно П. Лапласа.

Приложение аналитич. методов к М. сплошной среды привело к разработке теоретич. основ гидродинамики идеальной жидкости. Основополагающими здесь явились труды Эйлера, а также Д. Бернулли, Лагранжа, Д' Аламбера. Важное значение для М. сплошной среды имел открытый М. В. Ломоносовым закон сохранения вещества.

В 19 в. продолжалось интенсивное развитие всех разделов М. В динамике твёрдого тела классич. результаты Эйлера и Лагранжа, а затем С. В. Ковалевской, продолженные др. исследователями, послужили основой для теории гироскопа, к-рая приобрела особенно большое практич. значение в 20 в. Дальнейшему развитию принципов М. были посвящены основополагающие труды М. В. Остроградского, У. Гамильтона, К. Якоби, Г. Герца и др.

В решении фундаментальной проблемы М. и всего естествознания - об устойчивости равновесия и движения, ряд важных результатов получили Лагранж, англ, учёный Э. Раус и Н. Е. Жуковский. Строгая постановка задачи об устойчивости движения и разработка наиболее общих методов её решения принадлежат А. М. Ляпунову. В связи с запросами машинной техники продолжались исследования по теории колебаний и проблеме регулирования хода машин. Основы совр. теории автоматич. регулирования были разработаны И. А. Выгипе-градским.

Параллельно с динамикой в 19 в. развивалась и кинематика, приобретавшая всё большее самостоят, значение. Франц. ученый Г. Кориолис доказал теорему о составляющих ускорения, явившуюся основой М. относит, движения. Вместо терминов -"ускоряющие силы" и т. п. появился чисто кинематич. термин "ускорение" (Ж. Понселе, А. Резаль). Пуансо дал ряд наглядных геометрич. интерпретаций движения твёрдого тела. Возросло значение прикладных исследований по кинематике механизмов, важный вклад в к-рые сделал П. Л. Чебышев. Во 2-й пол. 19 в. кинематика выделилась в самостоят, раздел М.

Значит, развитие в 19 в. получила и М. сплошной среды. Трудами Л. Навъе и О. Каши были установлены общие ур-ния теории упругости. Дальнейшие фундаментальные результаты в этой области получили Дж. Грин, С. Пуассон, А. Сен-Венан, М. В. Остроградский, Г. Ламе, У. Томсон, Г. Кирхгоф и др. Исследования Навье и Дж. Стокса привели к установлению дифференциальных ур-ний движения вязкой жидкости. Существенный вклад в дальнейшее развитие динамики идеальной и вязкой жидкости внесли Гельмгольц (учение о вихрях), Кирхгоф и Жуковский (отрывное обтекание тел), О. Рейнольде (начало изучения турбулентных течений), Л. Прандтль (теория пограничного слоя) и др. Н. П. Петров создал гидродинамич. теорию трения при смазке, развитую далее Рейнольдсом, Жуковским совместно с С. А. Чаплыгиным и др. Сен-Венан предложил первую математич. теорию пластич. течения металла.

В 20 в. начинается развитие ряда новых разделов М. Задачи, выдвинутые электро- и радиотехникой, проблемами автоматич. регулирования и др., вызвали появление новой области науки - теории нелинейных колебаний, основы к-рой были заложены трудами Ляпунова и А. Пуанкаре. Другим разделом М., на котором базируется теория реактивного движения, явилась динамика тел переменной массы; её основы были созданы ещё в кон. 19 в. трудами И. В. Мещерского. Исходные исследования по теории движения ракет принадлежат К. Э. Циолковскому.

В М. сплошной среды появляются два важных новых раздела: аэродинамика, основы к-рой, как и всей авиац. науки, были созданы Жуковским, и газовая динамика, основы которой были заложены Чаплыгиным. Труды Жуковского и Чаплыгина имели огромное значение для развития всей совр. гидроаэродинамики.

Современные проблемы механики. К числу важных проблем совр. М. относятся уже отмечавшиеся задачи теории колебаний (особенно нелинейных), динамики твёрдого тела, теории устойчивости движения, а также М. тел переменной массы и динамики космич. полётов. Во всех областях М. всё большее значение приобретают задачи, в к-рых вместо "детерминированных", т. е. заранее известных, величин (напр., действующих сил или законов движения отд. объектов) приходится рассматривать "вероятностные" величины, т. е. величины, для к-рых известна лишь вероятность того, что они могут иметь те или иные значения. В М. непрерывной среды весьма актуальна проблема изучения поведения макрочастиц при изменении их формы, что связано с разработкой более строгой теории турбулентных течений жидкостей, решением проблем пластичности и ползучести и созданием обоснованной теории прочности и разрушения твёрдых тел.

Большой круг вопросов М. связан также с изучением движения плазмы в магнитном поле (магнитная гидродинамика), т. е. с решением одной из самых актуальных проблем совр. физики - осуществление управляемой термоядерной реакции. В гидродинамике ряд важнейших задач связан с проблемами больших скоростей в авиации, баллистике, турбостроении и двигателестроении. Много новых задач возникает на стыке М. с др. областями наук. К ним относятся проблемы гидротермохимии (т. е. исследования механич. процессов в жидкостях и газах, вступающих в химич. реакции), изучение сил, вызывающих деление клеток, механизма образования мускульной силы и др.

При решении мн. задач М. широко используются электронно-вычислительные и аналоговые машины. В то же время разработка методов решения новых задач М. (особенно М. сплошной среды) с помощью этих машин - также весьма актуальная проблема.

Исследования в разных областях М. ведутся в ун-тах и в высших технич. уч. заведениях страны, в Ин-те проблем механики АН СССР, а также во многих других н.-и. ин-тах как в СССР, так и за рубежом.

Результаты исследований, относящихся к различным областям М., публикуются в многочисленных периодич. изданиях: "Доклады АН СССР" (серия Математика. Физика, с 1965), "Известия АН СССР" (серии Механика твёрдого тела и Механика жидкости и газа, с 1966), "Прикладная математика и механика" (с 1933), "Журнал прикладной механики и технической физики" (изд. Сибирского отд. АН СССР, с 1960), "Прикладная механика" (изд. АН УССР, с 1955), "Механика полимеров" (изд. АН Латв. ССР, с 1965), "Вестники" и "Труды" ряда высших уч. заведений и др. (см. также Гидроазромеханика).

Для координации науч. исследований по М. периодически проводятся между-нар. конгрессы по теоретич. и прикладной М. и конференции, посвящённые отд. областям М., организуемые Междунар. союзом по теоретич. и прикладной М. (ШТАМ), где СССР представлен Национальным к-том СССР по теоретич. и прикладной М. Этот же к-т совместно с др. науч. учреждениями периодически организует всесоюзные съезды и конференции, посвящённые исследованиям в различных областях М.

Лит.: Галилей Г., Соч., т. 1, М.- Л., 1934; Ньютон И., Математические начала натуральной философии, в кн.: К р ы-л о в А. Н., Собр. трудов, т. 7, М. -Л., 1936; Эйлер Л., Основы динамики точки, М.- Л., 1938; Даламбер Ж., Динамика, пер. с франц., М.- Л., 1950; Лагранж Ж., Аналитическая механика, пер. с франц., т. 1-2, М.- Л., 1950; Жуковский Н. Е., Теоретическая механика, М.- Л., 1950; Суслов Г. К., Теоретическая механика, 3 изд., М.- Л., 1946; Б у х-гольц Н. Н., Основной курс теоретической механики, ч. 1 (9 изд.), ч. 2 (6 изд.), М., 1972; см. также лит. при ст. Гидроаэромеханика, Упругости теория и Пластичности теория. По истории механики: Моисеев Н. Д., Очерки развития механики, [М.], 1961; Космодемьянский А.А., Очерки по истории механики, 2 изд., М., 1964; История механики с древнейших времен до конца XVIII в., под общ. ред. А. Т. Гри-горьяна и И. Б. Погребысского, М., 1971; Механика в СССР за 50 лет, т. 1 - 4, М., 1968 - 1973; Л ь о ц ц и М., История физики, пер. с итал., М., 1970.

С. М. Торг.

МЕХАНИКА ГРУНТОВ, научная дисциплина, изучающая напряжённо-деформированное состояние грунтов, условия их прочности, давление на ограждения, устойчивость грунтовых массивов и др. В М. г. рассматривается зависимость механич. свойств грунтов от их строения и физич. состояния, исследуются общая сжимаемость грунтов, их структурно-фазовая деформируемость, контактная сопротивляемость сдвигу. Результаты, полученные в М. г., используются при проектировании оснований и фундаментов зданий, пром. и гидротех-нич. сооружений, в дорожном и аэродромном строительстве, устройстве подземных коммуникаций, прокладке трубопроводов, а также для прогнозирования деформаций и устойчивости откосов, подпорных стен и др. Методы М. г. применяются при рассмотрении задач об использовании взрывов и вибраций в производств, процессах, связанных с разработкой грунтов.

Осн. вид деформации грунтов - уплотнение их при сжатии. Оно вызывается действием нормальных усилий, приложенных к элементу грунта, и происходит гл. обр. за счёт взаимного перемещения (сдвигов и поворотов) твёрдых минеральных частиц, вызывающего уменьшение пористости грунта. Характеристиками деформируемости грунтов служат коэфф. относит. сжимаемости или обратно пропорциональный ему модуль общей деформации и коэфф. относит, поперечной деформации, аналогичные модулю упругости и коэфф. Пуассона (см. Пуассона коэффициент) упругих тел, с той разницей, что нагружение грунта предполагается однократным (без последующей разгрузки) и грунт далёк от разрушения. Для грунтов характерна деформируемость их во времени как вследствие выжимания воды из пор грунта и вызываемого этим перераспределения давлений между пбровой водой и грунтовым скелетом (процесс фильтрац. консолидации), так и в результате вязкого взаимного перемещения грунтовых частиц (процесс ползучести грунта).

Осн. вид нарушения прочности грунта - смещение одной его части по отношению к другой вследствие незатухающего сдвига, переходящего в срез. Сопротивление срезу несвязных (сыпучих) грунтов обусловливается силами внутр. трения, развивающегося в точках контакта частиц грунта при взаимном их смещении. В глинистых грунтах взаимному смещению препятствуют цементационные и водно-коллоидные связи, обусловливающие сопротивление срезу. Показатели прочности грунта - угол внутр. трения и удельное сцепление (зависящие от физич. состояния грунта)-являются лишь параметрами диаграммы среза, необходимыми в М. г. для расчёта прочности. Для глинистых грунтов величина сил внутр. трения зависит от той доли внешней нагрузки, к-рая воспринимается их минеральным скелетом. Если часть нагрузки передаётся на поровую воду, то в грунте проявляется уменьшенное сопротивление срезу за счёт трения. В М. г. скорость движения воды в порах грунта описывается законом Дарси, скорость деформирования вязко-пластичных межчастичных связей - интегральным ур-нием теории наследственной ползучести Больцмана - Вольтерры, ядро к-рой устанавливается по результатам экспериментов. При вибрациях механич. свойства грунтов (особенно несвязных) меняются в зависимости от интенсивности колебаний. Малосвязные грунты под действием вибраций в определённых условиях приобретают свойства вязких жидкостей.

В М. г. при построении прогнозов пользуются данными инженерной геологии, инженерной гидрогеологии, а также исходными зависимостями механики сплошной среды и, в частности,- теорий упругости, пластичности, ползучести, статики сыпучей среды.

Задачи исследования напряжений и деформаций грунтовых массивов под действием внешних сил и собств. веса, разработка вопросов их прочности, устойчивости, давления грунтов на ограждения, а также на неглубоко расположенные подземные сооружения являются важнейшими в М. г.; решение их для различных случаев загружения имеет непосредств. приложение в практике строительства.

При рассмотрении поставленных проблем в М. г. в основном применяются 2 метода: расчётно-теоретический, основывающийся на математич. решении чётко сформулированных задач М. г. с обязательным опытным (лабораторным или полевым) определением значений исходных параметров, и метод моделирования, используемый в тех случаях, когда сложность задачи не позволяет получить "замкнутого" решения или когда результат получается весьма громоздким. Первый метод интенсивно развивается благодаря применению ЭВМ. Второй метод (впервые предложенный в СССР Г. И. Покровским и Н. Н. Давиденковым) получает развитие в М. г. в двух направлениях: физич. моделирования для задач, в к-рых не учитываются массовые силы, и центробежного моделирования,отвечающего требованиям теории подобия (см. Подобия теория) с учётом массовых сил.

Использование решений, основанных на ур-ниях сплошной линейно-деформируемой среды и применяемых к грунтам лишь при определённых условиях, позволяет рассматривать мн. задачи М. г., где напряжённое состояние не является предельным. В ряде случаев по теории линейно-деформируемой среды устанавливается лишь напряжённое состояние, а переход к деформациям осуществляется при помощи экспериментально определяемых зависимостей.

При рассмотрении задач о деформировании грунтов во времени (по теории фильтрационной консолидации или ползучести) применяется распределение напряжений, полученное на основе решения задачи для сплошной линейно-деформируемой среды.

Теория предельного равновесия сыпучих сред используется в М. г. для рассмотрения задач, связанных с определением критич. нагрузок на основания, предельного равновесия грунтового откоса заданного профиля, очертания максимально устойчивых откосов без при-грузки или с заданной пригрузкой сверху, активного и пассивного давлений грунтов на наклонные подпорные стенки, устойчивости грунтовых сводов и др.

Нек-рые виды грунтов, являясь структурно неустойчивыми (оттаивающие веч-номёрзлые, лёссовые просадочные при замачивании, слабые структурные), обладают особенностями деформирования, связанными с резкими изменениями их физич. состояния и структуры. В совр. М. г. разработаны спец. методы расчёта осадок вечномёрзлых грунтов при их оттаивании, просадок лёссов при замачивании, устанавливаются предельные скорости загружения слабых глинистых и за-торфованных грунтов из условия сохранения их структурной прочности и т. д. На основе науч. достижений в области М. г. в СССР создан наиболее прогрессивный метод проектирования оснований и фундаментов по предельным деформациям. Важной задачей совр. М. г. является дальнейшее совершенствование методов определения физико-механич. свойств грунтов в лабораторных и полевых условиях, комплексного исследования совместной работы фундаментов сооружений и грунтов оснований, расчёт свайных фундаментов.

Первой фундаментальной работой по М. г. является исследование французского учёного Ш. Кулона (1773) по теория сыпучих тел, ряд результатов которой успешно применяется и в настоящее время при расчёте давления грунтов на подпорные стенки. Франц. учёным Ж. Буссинеском было получено решение задач (1885) о распределении напряжений в упругом полупространстве под сосредоточенной силой, послужившее основой для определения напряжений в линейно-деформируемых основаниях. Важным этапом в развитии М.г. явились исследования амер. учёного К. Терцаги. Большой вклад в М. г. сделан русскими (В. И. Курдюмов, П. А. Миняев) и особенно советскими учёными. Последними разработана новейшая теория предельной равновесия грунтов (В. В. Соколовский, В. Г. Березанцев, С. С. Голушкевич, М. В. Малышев и др.), сформулированы и решены задачи теории консолидации двух- и трёхфазных грунтов (Н. М. Герсеванов и Д. Е. Полыпин, В. А. Флорин, Н. А. Цытович, Н. Н. Маслов, Ю. К. Заредкий и др.), на базе теории балок на упругом основании исследованы вопросы совместной работы сооружений и их оснований (А. Н. Крылов, М. И. Горбунов Посадов, В. А. Флорин, Б. Н. Жемочкин, А. П. Синицын, И. А. Симвулид и др.). Важная роль принадлежит сов. учёным в разработке ряда вопросов механики отд. региональных видов грунтов - структурно-неустойчивых проса-дочных (Ю. М. Абелев, Н. Я. Денисов, Р. А. Токарь), многолетнемёрзлых (Н. А. Цытович, С. С. Вялов, М. Н. Гольдштейн и др.). Среди исследований по вопросам устойчивости откосов наиболее известны работы В. В. Соколовского, Н. Н. Мас-лова, М. Н. Гольдштейна, подпорных стенок - И. П. Прокофьева, Г. К. Клейна. Из зарубежных учёных в области М. г. наиболее известны своими работами: Ж. Керизель (Франция), И. Бринч-Хансен (Дания), Р. Гибсон, А. Бишоп (Великобритания), М. Био, У. Лэмб (США).

Н.-и. работы по М. г. ведутся в ряде науч. учреждений и вузов СССР, преим. в н.-и. Ин-те оснований и подземных сооружений им. Н. М. Герсеванова, Моск. инженерно-строит. ин-те им. В. В. Куйбышева и др. строит, вузах.

В 1936 по инициативе К. Терцаги было создано Междунар. об-во по механике грунтов и фундаментостроению (ISSMFE), членом к-рого (с 1957) является СССР. 8-й конгресс этого об-ва состоялся в Москве в 1973. Орган общества - журн. "Geotechnique" (L.,c 1948). В СССР с 1959 издаётся журнал * Основания, фундаменты и механика грунтов". Периодич. издания выпускаются также в США, Франции, Италии и др. странах.

Лит.: Прокофьев И. П., Давление сыпучего тела и расчёт подпорных стенок, 5 изд., М., 1947; Герсеванов Н. М., Польшин Д. Е., Теоретические основы механики грунтов и их практические применения, М., 1948; Флорин В. А., Основы механики грунтов, т. 1 - 2, Л.- М., 1959-1961; Соколовский В. В., Статика сыпучей среды, 3 изд., М., 1960; Терца-г и К., Теория механики грунтов, пер. с нем., М., 1961; Цытович Н. А., Механика грунтов, 4 изд., М., 1963; его же, Механика грунтов. Краткий курс, 2 изд., М., 1973; Клейн Г. К., Расчёт подпорных стен, М., 1964; Гольдштейн М. Н., Механические свойства грунтов, 2 изд., [т. 1-2J, М., 1971-73. Н. А. Цытович, М. В. Малышев.

МЕХАНИКА РАЗВИТИЯ, раздел биологии, изучающий причинные механизмы индивидуального развития организмов. Основанная в 80-х гг. 19 в. нем. учёным В. Ру М. р. бурно развивалась в 1-й трети 20 в. Начиная с 40-х гг. в результате сближения М. р., цитологии, генетики, эмбриологии, экспериментальной морфологии, биохимии и молекулярной биологии возникла синтетич. область исследования - биология развития.

МЕХАНИКА СПЛОШНОЙ СРЕДИ, раздел механики, посвящённый изучению движения и равновесия газов, жидкостей и деформируемых твёрдых тел. К М. с. с. относятся: гидроаэромеханика, газовая динамика, упругости теория, пластичности теория и др. Осн. допущение М. с. с. состоит в том, что вещество можно рассматривать как непрерывную, сплошную среду, пренебрегая его молекулярным (атомным) строением, и одновременно считать непрерывным распределение в среде всех её характеристик (плотности, напряжений, скоростей частиц и др.). Это оправдывается тем, что размеры молекул ничтожно малы по сравнению с размерами частиц, к-рые рассматриваются при теоретич. и экспериментальных исследованиях в М. с. с. Поэтому можно применить в М. с. с. хорошо разработанный для непрерывных функций аппарат высшей математики.

Исходными в М. с. с. при изучении любой среды являются: 1) ур-ния движения или равновесия среды, получаемые как следствие основных законов механики, 2) ур-ние неразрывности (сплошности) среды, являющееся следствием закона сохранения массы, 3) ур-ние энергии. Особенности каждой конкретной среды учитываются т. н. ур-нием состояния или реологич. ур-нием (см. Реология), устанавливающим для данной среды вид зависимости между напряжениями или скоростями изменения напряжений и деформациями или скоростями деформаций частиц. Характеристики среды могут также зависеть от темп-ры и др. физико-химич. параметров; вид таких зависимостей должен устанавливаться дополнительно. Кроме того, при решении каждой конкретной задачи должны задаваться начальные и граничные условия, вид к-рых тоже зависит от особенностей среды.

М. с. с. находит огромное число важных приложений в различных областях физики и техники.

Лит.: Ландау Л. Д. и Л и ф-шиц Е. М., Механика сплошных сред, 2 изд., М., 1954 (Теоретическая физика); Седов Л. И., Механика сплошной среды, т. 1-2, М., 1973.

С. М. Торг.

МЕХАНИКА СЫПУЧИХ СРЕД, раздел механики сплошной среды, в к-ром исследуются равновесие и движение сыпучих сред (песчаных, глинистых и др. грунтов, зерна и т. д.). Задача М. с. с.-гл. обр. определение давления грунтов на опорные стенки, формы возможных поверхностей сползания откосов, вычисление необходимой глубины фундаментов, определение давления зерна на стены элеваторов, изучение волновых процессов в грунтах при динамич. нагру-жениях и т. д. Одним из осн. разделов М. с. с. является механика грунтов.

"МЕХАНИКА ТВЁРДОГО ТЕЛА", "Известия АН СССР. Механика твёрдого тел а", научный журнал, орган Отделения механики и процессов управления АН СССР. Выходит в Москве с 1966. В 1966-68 наз. "Инженерный журнал. Механика твёрдого тела". С 1969-"М. т. т.". Публикует теоретич. и экспериментальные исследования в области механики недеформируемого твёрдого тела, деформируемой твёрдой среды, конструкций и их элементов. Освещает вопросы динамики системы материальных точек и абсолютно твёрдого тела; теории устойчивости движения и процессов управления движущимися объектами; теории гигроскопич. устройств; теории упругости, пластичности и ползучести; механики полимеров, грунтов и гетерогенных твёрдых сред; прочности материалов и конструкций и др. Тираж (1974) 1,6 тыс. экз. Переиздаётся на англ, языке в США.