МЕТАЛЛИЗАЦИЯ, покрытие поверхности изделия металлами и сплавами для сообщения физико-хим. и механич. свойств, отличных от свойств металлизируемого (исходного) материала. М. применяют для защиты изделий от коррозии, износа, эрозии, в декоративных и др. целях. По принципу взаимодейст-Зия металлизируемой поверхности (подложки) с наносимым металлом различают М., при к-рой сцепление покрытия с основой (подложкой) осуществляется механически-силами адгезии (см. табл., группа 1), и М., при к-рой сцепление обеспечивается силами металлич. связи (группа 2): с образованием диффузионной зоны на границе сопрягающихся поверхностей, за пределами к-рой покрытие состоит из наложенного слоя металла или сплава (подгруппа 2а), и с образованием диффузионной зоны в пределах всего слоя покрытия (подгруппа 26).

Технология М. по типам 1 и 2а предусматривает наложение слоя вещества на поверхность холодного или нагретого до относительно невысоких темп-р изделия. К этим видам М. относятся: электролитические (см. Гальванотехника), хим., газопламенные процессы получения покрытий (см. Напыление); нанесение покрытий плакированием, осаждением хим. соединений из газовой фазы, электрофорезом; вакуумная М.; М. взрывом, воздействием лучей лазера, плазмы, погружением в расплавленные металлы и др. способы. В этих процессах М. сопровождается изменением геометрии и размеров изделия соответственно толщине слоя наносимого металла или сплава. Технология М. по типу 26 предусматривает диффузионное насыщение металлич. элементами поверхности деталей, нагретых до высоких темп-р, в результате к-рого в зоне диффузии элемента образуется сплав (см. Диффузионная металлизация). В этом случае геометрия и размеры металлизируемой детали практически не меняются.

М. изделий по типу 1 производится в декоративных целях, для повышения твёрдости и износостойкости, для защиты от коррозии. Из-за слабого сцепления покрытия с подложкой этот вид М. нецелесообразно применять для деталей, работающих в условиях больших нагрузок и темп-р. М. деталей по типу 2 придаёт им высокую твёрдость и износостойкость, высокую коррозионную и эрозионную стойкость, жаростойкость, необходимые теплофизич. и электрич. свойства. М. по типу 26 применяется для деталей, претерпевающих действие значит, механич. напряжений (статич., динамич., знакопеременных) при низких и высоких температурах. Эти виды М., за нек-рым исключением, используются для нанесения защитного слоя на подложки из различных металлов, сплавов и неметаллич. материалов (пластмассы, стёкла, керамика, бумага, ткани и др.). М. находит применение в электротехнике, радиоэлектронике, оптике, ракетной технике, автомоб. пром-сти, судостроении, самолётостроении и др. областях техники.

В табл. приведены осн. технологич. процессы, с помощью к-рых осуществляется М. различными металлами. О видах М. см. в статьях Алитирование, Анодирование, Бериллизация, Бронзи-рование, Железнение, Золочение, Кадмирование, Латунирование, Меднение, Молибденирование, Никелирование, Палладирование, Платинирование, Родирование, Свинцевание, Серебрение, Тита-нирование, Хромирование, Цинкование.

Лит.: Высокотемпературные неорганические покрытия, [пер. с англ.], М., 1968; Ротрекл Б., Дитрих 3., Там хина И., Нанесение металлических покрытий на пластмассы, пер. с чеш., Л., 1968; Ройх И. Л., Колтунова Л. Н.,

Защитные вакуумные покрытия на стали, М., 1971; Катц Н. В., Металлизация тканей 2 изд., М., 1972. Г. Н. Дубинин.

МЕТАЛЛИЛХЛОРИД, 1 хлор 2 метил-пропен-2, химич. средство (жидкость) для газового обеззараживания зерна и зернопродуктов от вредителей; см. в ст. Фумшанты.

МЕТАЛЛИСТИЧЕСКАЯ ТЕОРИЯ ДЕНЕГ, см. в ст. Деньги, раздел Буржуазные теории денег.

МЕТАЛЛИЧЕСКАЯ СВЯЗЬ, тип связи атомов в кристаллических веществах, обладающих металлич. свойствами (металлах, металлидах). М. с. обусловлена большой концентрацией в таких кристаллах квазисвободных электронов (электронов проводимости). Отрицательно заряженный электронный газ "связывает" положительно заряженные ионы друг с другом (см. Химическая связь, Кристаллохимия).

МЕТАЛЛИЧЕСКИЕ ИЗДЕЛИЯ, то же, что метизы.

МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ, металлоконструкции, общее название конструкций, выполненных из металлов и применяемых в стр-ве. Совр. М. к. подразделяются на стальные (см. Стальные конструкции) и из лёгких сплавов (напр., алюминиевых сплавов). До нач. 20 в. в стр-ве применялись в основном металлич. строит, конструкции из чугуна (гл. обр. в колоннах, балках, лестницах и т. д. Из металла изготовлен, напр., купол Исаакиевского собора в Ленинграде диаметром 22 м). В совр. стр-ве получили распространение стальные конструкции, используемые в несущих каркасах пром. сооружений, жилых и обществ, зданий, в пролётных строениях мостов, каркасах доменных печей, газгольдерах, резервуарах, мачтах, опорах линий электропередачи и др. Конструкции из алюминиевых сплавов, обладающие рядом достоинств (лёгкость, коррозионная стойкость, технологичность, высокие декоративные свойства), наиболее широко применяются в качестве ограждающих элементов и в виде отделочных деталей зданий. М. к. изготовляются преим. из профилированного и листового метал-ла. По характеру соединения элементов между собой различают М. к. сварные, клёпаные и с болтовыми соединениями. В машиностроении обычно под М. к. подразумеваются детали, изготовленные из профилированного металла, в отличие от литых деталей и поковок. См. также Листовые конструкции, Клёпаные конструкции, Сварные конструкции.

Л. В. Касабъян.

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ, интерметаллические соединения, то же, что металлиды.

МЕТАЛЛИЧЕСКИЙ МОСТ, мост, пролётные строения к-рого выполнены из металла, преим. стали (опоры в совр. М. м. обычно бетонные или железобетонные); см. Стальной мост, Мост.

МЕТАЛЛОВЕДЕНИЕ, наука, изучающая связи состава, строения и свойств металлов и сплавов, а также закономерности их изменения при тепловых, меха-нич., физико-хим. и др. видах воздействия. М.- науч. основа изысканий состава, способов изготовления и обработки металлич. материалов с разнообразными механич., физ. и хим. свойствами. Уже народам древнего мира было известно получение металлич. сплавов (бронзы и др.), а также повышение твёрдости и прочности стали посредством закалки. Как самостоят, наука М. возникло и оформилось в 19 в., вначале под назв. металлографии. Термин "М." введён в 20-х гг. 20 в. в Германии, причём было предложено сохранить термин "металлография" только для учения о макро- и микроструктуре металлов и сплавов. Во мн. странах М. по-прежнему обозначают термином "металлография", а также наз. "физической металлургией". Возникновение М. как науки было обусловлено потребностями техники. В 1831 П. П. Аносов, разрабатывая способ получения булата, изучал под микроскопом строение отполированной поверхности стали, предварительно протравленной кислотой. В 1864 Г. К. Сорби произвёл подобные же исследования микроструктуры жел. метеоритов и образцов стали, применив при этом микрофотографию. В 1868 Д. К. Чернов указал на существование температур, при к-рых сталь претерпевает превращения при нагревании и охлаждении (критические точки). Эти темп-ры измерил Ф. Осмонд (1888) при помощи термоэлектрич. термометра, изобретённого А. Ле Шателъе. У. Робертс-Остен (Великобритания,) исследовал методами термического анализа и микроструктуры неск. двойных металлич. систем, в т. ч. железоуглеродистые сплавы (1897). Его результаты критически пересмотрел в 1900 с точки зрения фаз правила, теоретически выведенного Дж. У. Гиббсом (1873-76), Г. В. Розе-бом. Ле Шателье значительно улучшил технику изучения микроструктуры. Н. С. Курнаков сконструировал самопишущий пирометр (1903) и на основе изучения ряда металлич. двойных систем совм. с сотрудниками (С. Ф. Жемчужным, Н. И. Степановым, Г. Г. Уразовым и ДР-) установил закономерности, явившиеся основой учения о сингулярных течках и физико-химического анализа. С 1903 диаграммы состояния металлич. сплавов изучал Г. Тамман с сотр. В России А. А. Банков исследовал явления закалки сплавов (1902), значительно улучшил методику М. введением авто-матич. записи дифференциальных кривых нагревания и охлаждения (1910) и травления микрошлифов при высокой темп-ре (1909). Байков основал в Петерб. политехнич. ин-те первую в России уч. лабораторию М., в к - рой работали Н. Т. Гудцов, Г. А. Кащенко, М. П. Славинский, В. Н. Свечников и др. Пионерами применения М. в заводской практике были А. А. Ржешотарский, создавший лабораторию М. на Обуховском з-де (1895), и Н. И. Беляев, основавший такую же лабораторию на Путиловском з-де (1904). В 1908 А. М. Бочвар организовал в Высшем технич. уч-ще первую в Москве металлографич. лабораторию, в к-рой работали И. И. Сидорин, А. А. Бочвар, С. М. Воронов и др. специалисты в области М. цветных металлов.

В 1918 А. Портевен и М. Гарвен (Франция) установили зависимость критич. точек стали от скорости охлаждения. С 1929-30 начались исследования превращений в стали в изотермич. условиях (Э. Давенпорт и Э. Бейн, Р. Мейл в США, С. С. Штейнберг, Н. А. Минке-вич в СССР, Ф. Вефер в Германии и др.). Одновременно развивалась физ. теория кристаллизации металлов, экспериментальные основы к-рой были заложены в нач. 20 в. Тамманом (Я. И. Френкель, В. И. Данилов в СССР, М. Фоль-мер в Германии, И. Странский в Болгарии).

Исключит, роль в развитии М. играл начиная с 20-х гг. 20 в. рентгенострук-турный анализ, к-рый позволил определить кристаллич. структуру различных фаз, описать её изменения при фазовых переходах, термической обработке и деформации (структуру мартенсита, изменения структуры твёрдых растворов при их распаде и т. д.). В этой области важнейшее значение имели работы Г. В. Курдюмова, С. Т. Конобеевского, Н. В. Агеева и др., а за рубежом -А. Вестгрена (Швеция), У. Юм-Розери (Великобритания), У. Делингера, В. Кестера (Германия) и др. Курдюмов, в частности, разработал теорию закалки и отпуска стали и исследовал осн. типы фазовых" превращений в твёрдом состоянии ("нормальные" и мартенситные). В 20-х гг. А. Ф. Иоффе и Н. Н. Давиденков положили начало теории прочности кристаллов. Теория фазовых превращений, изучение атомно-кристаллич. и электронного строения металлов и сплавов, природы механич., тепловых, электрич. и магнитных свойств металлов были новыми этапами в истории М. как пограничной науки между физ. химией и физикой твёрдого тела (см. Металлофизика).

Развитие М. во 2-й пол. 20 в. характеризуется значит, расширением методич. возможностей. Кроме рентгеноструктурного анализа, для изучения атомнокристаллического строения металлов применяют электронную микроскопию, к-рая позволяет изучать локальные изменения строения сплавов, взаимное расположение структурных составляющих и несовершенства кристаллич. строения (см. Дефекты в кристаллах). Существ, значение имеют методы электронной дифракции, нейтронографии, радиоизотопных индикаторов, внутреннего трения, микрорентгеноспектрального анализа, калориметрии, магнитометрии и др.

М. условно разделяется на теоретическое, рассматривающее общие закономерности строения и процессов, происходящих в металлах и сплавах при различных воздействиях, и прикладное (техническое), изучающее основы технологич. процессов обработки (термич. обработка, литьё, обработка давлением) и конкретные классы металлич. материалов.

Осн. разделы теоретич. М.: теория металлич. состояния и физ. свойств металлов и сплавов, кристаллизация, фазовые равновесия в металлах и сплавах, диффузия в металлах и сплавах, фазовые превращения в твёрдом состоянии, физ. теория процессов пластической деформации, упрочнения, разрушения и рекристаллизации. Содержание теоретич. М. в значит, мере связано с металлофизикой.

Теория металлич. состояния рассматривает металл как совокупность электронов, движущихся в периодич. поле положительных ионов (см. Металлы). На основе учёта сил межатомного взаимодействия оценена теоретич. прочность металлич. монокристаллов, к-рая в 100-1000 раз больше практической. Электрич. сопротивление металлов рассматривается как следствие нарушений идеального расположения атомов в кристаллич. решётке, обусловленных её колебаниями, наличием статич. дефектов и примесей. В зависимости от особенностей межатомного взаимодействия возникают различные фазы: упорядоченные твёрдые растворы, электронные соединения, фазы внедрения, сигма-фазы и т. д. Развитие электронной теории металлов и сплавов сыграло большую роль в создании сплавов с особыми физ. свойствами (сверхпроводящих, магнитных и др.).

Кристаллизация металлов характеризуется большими значениями скорости зарождения центров кристаллизации и скорости роста кристаллов при малом интервале переохлаждений, в к-ром происходит затвердевание. Строение реального металлич. слитка определяется закономерностями кристаллизации, условиями теплоотвода, а также влиянием примесей. Механизм эвтектич. кристаллизации сплавов был изучен А. А. Боч-варом (1935).

Один из важнейших разделов теоретич. М. - изучение фазовых равновесий в сплавах. Построены диаграммы состояния для мн. двойных, тройных и более сложных систем и установлены темп-ры фазовых переходов. При определённых условиях (напр., быстром охлаждении) могут возникать метастабильные состояния с относительным, при данных термо-динамич. условиях, минимумом свободной энергии. Наиболее важные примеры таких состояний - мартенсит стали и пересыщенные твёрдые растворы металлов (напр., А1 - Си). Кинетика фазовых превращений и условия возникновения метастабильных состояний определяются степенью отклонения системы от равновесия, подвижностью атомов (характеристики диффузии), структурным и хим. соответствием возникающих и исходных фаз.

Превращения в твёрдом состоянии (фазовые превращения) в условиях сильного межатомного взаимодействия в кристаллич. фазах сопровождаются возникновением полей напряжений. При нек-рых условиях и наличии полиморфных модификаций (см. Полиморфизм) наблюдается упорядоченная перестройка кристаллич. решётки на границе фаз (мартенситное превращение). В области темп-р, при к-рых быстро происходят релаксационные процессы, образование кристаллов новой фазы может протекать путём неупорядоченных диффузионных переходов отд. атомов ("нормальное" превращение). Для М. железных сплавов большое значение имеют кинетич. диаграммы превращений аустенита. В металлич. сплавах часто протекают процессы распада пересыщенных твёрдых растворов. Во мн. случаях наиболее существ, изменения свойств происходят до возникновения при распаде второй фазы. Рентгенографические исследования показали, что эти изменения связаны с процессами перераспределения атомов в решётке матрицы, образованием обогащённых зон внутри матрицы (см. Старение металлов). Равновесия и кинетика фазовых превращений могут в значит, мере изменяться в результате воздействия высоких давлений. В связи а проявлением сил хим. взаимодействия между атомами различных элементов в ненасыщенных твёрдых растворах могут также происходить процессы перераспределения атомов элементов. Упорядоченное расположение атомов в определённых узлах кристаллич. решётки возникает в твёрдых растворах замещения (напр., Сu - Аl) и внедрения (мартенсит, Та - О и т. д.). В нек-рых случаях появляются внутрифазовые неоднородности - сегрегации.

Важное значение для развития М. имеет физическая теория пластической деформации и дефектов кристаллич. строения. Расхождение между теоретически вычисленными и наблюдаемыми на опыте значениями прочности привело в 1933-34 к предположению о наличии в кристаллах особых дефектов (несовершенств) - дислокаций, перемещение к-рых под действием сравнительно малых сил осуществляет пластич. деформацию. Экспериментальные исследования, проведённые различными методами и особенно дифракционной электронной микроскопией тонких фольг, подтвердили наличие дислокаций. Методы внутр. трения и др. позволили выяснить роль точечных дефектов (вакансий). Наличие вакансий влияет на физ. свойства кристаллов и играет важную роль в диффуз. процессах при термообработке, отдыхе металлов, рекристаллизации металлов, спекании и т. д. Изучение свойств бездефектных нитевидных кристаллов доказало правильность теоретич. оценки прочности. В практически важных случаях повышение прочности достигается увеличением плотности дислокаций (напр., пластической деформацией, мартенсит-ным превращением при закалке или их сочетанием). Примеси могут скапливаться у дислокаций и блокировать их. Одно из наиболее ярких проявлений влияния реальной структуры на процессы в металлах и сплавах - различия в скорости диффузии и распределении элементов по границам и объёму поликристаллов. В нек-рых случаях очень малые примеси изменяют скорость граничной диффузии. Поскольку мн. процессы распада твёрдых растворов начинаются преим. в приграничных областях, малые примеси могут существенно изменять кинетику этих процессов и конечную структуру. Взаимодействие дислокаций с примесями внедрения (в железе -углерод и азот) - одна из гл. причин хладноломкости металлов с объёмноцен-трированной кубич. решёткой. Движением и взаимодействием дислокаций определяется протекание упрочнения металлов, разупрочнения, ползучести, полигонизации, рекристаллизации и др. процессов. Наиболее эффективные средства изменения структуры и свойств металлич. материалов- легирование, термическая обработка, поверхностное упрочнение, химико-термическая обработка, термомеханическая обработка.

Содержанием прикладного (технического) М. является изучение состава, структуры, процессов обработки и свойств различных конкретных классов металлич. материалов (напр., железоуглеродистых сплавов, конструкционной стали, нержавеющей стали, жаропрочных сплавов, алюминиевых сплавов, магниевых сплавов, металлокерамики). В связи с развитием новых областей техники возникли задачи изучения поведения металлов и сплавов при радиационных воздействиях, весьма низких темп-pax, высоких давлениях и т. д.

Лит.: Б у н и н К. П., Железоуглеродистые сплавы, К. - М., 1949; физические основы металловедения, М., 1955; Б о ч в а р А. А., Металловедение, 5 изд., М., 1956; К у р дю м о в Г. В., Явления закалки и отпуска стали, М., I960; Лившиц Б. Г., Металлография, М., 1963; Физическое металловедение, пер. с англ., в. 1 - 3, М., 1967-68.

Р. И. Энтин.

"МЕТАЛЛОВЕДЕНИЕ И ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕТАЛЛОВ", ежемесячный науч.-технич. и производств, журнал, орган Мин-ва станко-строит. и инструментальной пром-сти СССР и Центр, правления Науч.-технич. об-ва маш.-строит, пром-сти. Выходит в Москве с 1955. Публикует материалы о свойствах металлов и сплавов, освещает вопросы теории и технологии тер-мич. обработки, помещает статьи о достижениях зарубежной техники в этой области, техническую информацию, хронику, персоналии. Тираж (1973) 10 тыс. экз. Переиздаётся на английском языке в США.

МЕТАЛЛОГЕНИЧЕСКИЕ КАРТЫ, геол. карты, показывающие закономерности размещения рудных месторождений в связи с особенностями геол. строения местности.

По масштабу М. к. разделяются на три группы: обзорные, или мелкомасштабные (от 1 : 500 000 и мельче); среднемасштаб-ные (1 : 200 000 - 1 : 100 000); крупномасштабные (1 : 50 000 - 1 : 25 000). Геол. основой обзорных М. к. является карта формаций осадочных, магматических и метаморфич. пород, последовательно возникающих в процессе преобразования геосинклиналей в складчатые области и платформы. На среднемасштабных картах, кроме того, отображаются крупные складчатые и разрывные текто-нич. структуры. При составлении крупномасштабных М. к. изображаются возраст пород, их состав и все существенные тектонич. структуры.

Месторождения полезных ископаемых показываются внемасштабными условными знаками, отображающими их гене-тич. класс, минеральный и химич. состав, размеры запасов минерального сырья и его качество. Совокупность сходных месторождений оконтуривается с выделением на М. к. площадей их распространения, определяемых к.-л. элементом геологического строения местности или их комбинацией. При этом выделяются металлогенические области, районы и зоны, подчинённые породам определённого возраста, состава или строения.

Лит.: Смирнов В. И., Очерки металологении, М., 1963; Основные принципы составления, содержание и условные обозначения металлогенических и прогнозных карт рудных районов, М., 1964. В. И. Смирнов.

МЕТАЛЛОГЕНИЧЕСКИЕ ЭПОХИ, эпохи формирования рудных месторождений, отвечающие основным этапам геоло-гич. развития земной коры. Архейская М. э. выделялась по глубоко метаморфизованным месторождениям железистых кварцитов и сравнительно ограниченным по распространению керамическим пегматитам. Раннепротерозойская М. э. отличалась широким распространением метаморфогенных жел. руд (джеспилиты, итабириты), урансодержащих золотоносных конгломератов, медистых песчаников, магматических месторождений хрома, титана, меди, никеля. Среднепротеро-зойской М. э. также были свойственны метаморфогенньге месторождения железа и металлоносных конгломератов; кроме того, в это время формировались древнейшие колчеданные медные, свинцово-цинковые и гидротермальные урановые месторождения. Раннерифейская М. э. характеризовалась формированием мета-морфогенных месторождений железа, марганца, а также магматич. месторождений сульфидных медно-никелевых руд и редкометальных пегматитов. Поздне-рифейская М. э. отличалась массовым развитием месторождений медистых песчаников, проявлением гидротермальных месторождений золота, меди, олова и вольфрама. Каледонская М. э. характеризовалась преобладанием месторождений, связанных с базальтоидной магмой и представленных магматич. месторождениями железа, титана, хрома, платиноидов; известны также гидротермальные месторождения золота. Герцинская М. э. отличалась разнообразными полезными ископаемыми; среди них - магматические месторождения железа, титана, хрома, платиноидов; скарновые месторождения железа и меди; колчеданные месторождения меди, свинца и цинка; пегматитовые и грейзеновые месторождения вольфрама, олова, лития, бериллия; гидротермальные месторождения меди, свинца, цинка, молибдена, золота, урана. Альпийская М. э. выделялась по развитию разнообразных плутоногенных и вулканогенных гидротермальных месторождений меди, цинка, свинца, золота, вольфрама, олова, молибдена и особенно сурьмы и ртути.

Лит.: Смирнов В. И., Очерки металлогении, М., 1963; ТвалчрелидзеГ.А., О главнейших металлогенических эпохах Земли, "Геология рудных месторождений", 1970, т. 12, № 1.

В. И. Смирнов.

МЕТАЛЛОГЕНИЯ (от металлы и греч. -geneia - часть сложного слова, означающая происхождение, создание), раздел учения о полезных ископаемых, исследующий региональные закономерности формирования и размещения рудных месторождений. Служит науч. основой прогноза распространения различных групп рудных месторождений. Основоположники М.: в СССР - В. А. Обручев, С. С. Смирнов, Ю. А. Билибин', за рубежом - франц. геолог Л. де Лоне. М. исходит из того, что на последовательных этапах истории развития земной коры в её крупных структурных подразделениях со свойственными им процессами осадконакопления, тектоники и магматизма, возникают строго определённые группы рудных месторождений. Этот процесс протекает по-разному в геосинклиналях и на платформах.

Преобразование геосинклиналей в складчатые области сопровождается возникновением трёх серий магматич. пород и связанных с ними рудных месторождений. На ранней стадии (прогибание ложа геосинклинали и накопление мощной толщи базальтоидных вулканогенно-оса-дочных пород) образуются 4 формации магматич. пород: спилито-кератофировая с колчеданными месторождениями меди, цинка, иногда свинца; перидотитовая с магматич. месторождениями хромитов; габбро-пироксенит-дунитовая с магматич. месторождениями титано-магнетитовых руд; плагиогранит-плагиосиенитовая со скарновыми месторождениями железа и меди. В среднюю стадию геосинклинального развития, в период главных фаз складчатости, образуются 2 формации гранитоидных магматич. пород: гранодио-ритовая со скарновыми и гидротермальными месторождениями вольфрама (шеелита), золота, меди, молибдена, свинца и цинка; гранитная с пегматитовыми, аль-бититовыми и грейзеновыми месторождениями олова, вольфрама (вольфрамита), тантала, лития, бериллия. В позднюю стадию, переходную от геосинклинального к платформенному режиму, происходит внедрение 2 формаций магматич. пород: малых гипабиссальных интрузий состава от диорит-порфиров до гранит-порфиров и сиенит-порфиров с разнообразными плутоногенными гидротермальными месторождениями руд цветных, редких, благородных и радиоактивных металлов; андезито-дацитов со столь же разнообразными вулканогенными гидротермальными рудными месторождениями.

Приведённая схема М. геосинклиналей - обобщённая и обычно в полном виде не проявляется. В конкретных складчатых областях, возникших на месте геосинклиналей, либо развиваются рудные месторождения ранней и средней стадии геосинклинального развития, либо преобладают месторождения средней и поздней стадий. В соответствии с этим выделяются два профиля геосинклинальной М. (см. Геосинклиналь). В базаль-тоидном профиле, свойственном эвгео-синклиналям, преобладают рудные месторождения двух первых стадий (напр., на Урале). В гранитоидном профиле, характерном для миогеосинклиналей, развиты месторождения двух последних стадий (напр., в Верхоянье).

Формации магматич. пород и связанных с ними рудных месторождений закономерно размещаются в пределах геосинклиналей, создавая упорядоченную металлогенич. зональность складчатых областей. В эвгеосинклиналях располагаются спилито-кератофировая и плагиогранит-плагиосиенитовая формации ранней стадии со свойственными им месторождениями преим. жел. и медных руд. Эвгеосинклинальные троги отличаются сокращённым разрезом земной коры с отсутствием гранитного слоя, следствием чего является исключительно базальто-идный характер их М. Во внутр. зонах миогеосинклиналей и формирующихся на их месте срединных поднятий возникают цепи массивов гранитной формации средней стадии, с к-рыми связаны пояса пегматитовых, альбититовых и грейзено-вых мевторождений редких элементов. Внутр. зоны миогеосинклиналей характеризуются полным разрезом земной коры с хорошо развитым гранитным слоем; для них естественна гранитоидная М. Межтроговые зоны эвгеосинклиналей и периферия, зоны миогеосинклиналей являются областями распространения гра-нодиоритовой формации средней стадии
и связанных с нею рудных месторождений. Глубинные разломы, разграничивающие крупные структурно-формационные зоны геосинклиналей, контролируют внедрение, с одной стороны, перидотитов и габбро-пироксенитов ранней стадии, определяя позицию поясов магматич. месторождений хромитов ц титано-магнетитов, а с другой - определяют положение гипабиссальных плутонич. и вулканич. формаций магматич. пород поздней стадии, намечающих положение поясов, связанных с ними плутоногенных и вулканогенных гидротермальных месторождений цветных, редких, благородных и радиоактивных металлов.

М. платформ определяется тремя стадиями формирования их внутренних геологических структур: образованием складчатого основания, созданием осадочного чехла и тектоно-магматической активизацией.

В стадию формирования складчатого основания возникают месторождения складчатых зон, отвечающие особенностям М. геосинклиналей. Во время образования осадочного чехла платформ формируются пластовые осадочные месторождения рудных, нерудных и горючих полезных ископаемых. Полнота развития и особенности состава месторождений, формирующихся на стадии тек-тономагматической активизации платформ, зависят от интенсивности активизации.

На слабоактивизированных платформах нет заметных текто-нич. деформаций и магматич. пород, связанных с данной стадией развития платформ. Однако могут присутствовать т. н. телетермальные или стратиформные месторождения медных, свинцовых, цинковых, флюоритовых и баритовых руд, к-рые нек-рыми исследователями рассматриваются в качестве производных, внедрившихся на глубине магматич. пород. Их примером могут служить стратиформные месторождения свинцово-щш-ковых руд палеозойского чехла Сев.-Амер. платформы.

Активизированные платформы характеризуются образованием пологих складчатых деформаций, редких разломов и внедрением своеобразных магматических пород в платформенный период геологической истории. Так, Сибирская платформа в конце палеозоя - начале мезозоя была изогнута в широкие пологие складки, образовавшие поднятия и депрессии, разделённые разломами. К депрессиям приурочена формация траппов с сопровождающими её магматич. месторождениями сульфидных медно-никелевых руд, к поднятиям -интрузивы щелочных пород, сопровождаемые золотым оруденением; вдоль разломов внедрились алмазоносные кимберлиты и ультраосновные щелочные породы, сопровождаемые карбонатитовыми месторождениями апатита и редких элементов.

Интенсивно активизированным платформам свойственны внедрения гипабиссальных гранитных пород и гидротермальные месторождения золота, олова, молибдена, цинка, свинца и др. металлов.

Повторяемость сходных процессов формирования рудных месторождений в геол. истории Земли позволила выделить ряд последовательных металлогенич. эпох, а образование аналогичных групп рудных месторождений в сходных геол. условиях - металлогенич. провинций геосинклинального и платформенного типов. См. Металлогенические эпохи.

Лит.: Билибин Ю. А., Металлогенические провинции и Металлогенические эпохи, М., 1955; Магакьян И. Г., Основы металлогении материков, Ер., 1959; Смирнов В. И., Очерки металлогении, М-, 1963; Смирнов С. С., Очерки металлогении Восточного Забайкалья, М.-Л., 1944; Щеглов А. Д., Металлогения областей автономной активизации, Л., 1968.

В. И. Смирнов.

МЕТАЛЛОГРАФИЯ (от металлы и ...гра-фия), наука о структуре металлов и сплавов; составная часть металловедения. М. изучает закономерности образования структуры, исследуя макроструктуру и микроструктуру металла (путём ааблюдения невооруж. глазом либо с помощью светового и электронного микроскопов), а также изменения механич., электрич., магнитных, тепловых и др. физ. свойств металла в зависимости от изменения его структуры. Для изучения микроструктуры используют, кроме того, рентгеновскую дифракционную микроскопию (см. Рентгеновский структурный анализ). Исследование структуры необходимо для нахождения связи "структура - свойство", а установление закономерностей образования структуры - для прогнозирования на основе этой связи свойств новых сплавов. Напр., прочность однофазных сплавов связана с размером зерна; при наличии включений второй фазы расстояние между включениями влияет на прочность и темп-ру рекристаллизации сплава; от размера и количества включений второй фазы зависят магнитные свойства ферромагнитных материалов.

Макроструктура характеризуется формой и расположением крупных кристаллитов (зёрен), наличием и расположением различных дефектов металлов, распределением примесей (см. Ликвация) и неметаллич. включений. Микроструктура металлич. материала определяется формой, размерами, относит, количеством и взаимным расположением кристаллов отдельных фаз или их совокупностей, имеющих однообразный вид. Под тонкой структурой (субструктурой) понимают строение отдельных зёрен, определяемое расположением дислокаций и др. дефектов кристаллической решётки.

Формирование и изменение внутреннего строения металла (структуры) происходит в результате фазовых превращений при нагреве или охлаждении металла, а также вследствие пластич. деформации, облучения, отдыха, рекристаллизации, спекания и т. д. Структура литого металла, формирующаяся в результате возникновения и роста в расплаве центров кристаллизации, зависит от скорости охлаждения расплава, содержания примесей, направления отвода тепла (рис. 1) и др. факторов.

Рис. 1. Макроструктура литого сплава на основе железа. Зёрна вытянуты в направлении отвода тепла при затвердевании. Увеличено в 1,5 раза.

Рис. 2. Микроструктура алюминия после рекристаллизации, наблюдаемая, с помощью светового микроскопа в поляризованном свете. Увеличено в 70 раз.

Рис. 3. Микроструктура сплава железа с хромом и никелем, наблюдаемая с помощью электронного микроскопа. Крупные тёмные выделения образовались при высокой темп-ре. Мелкие выделения, возникшие при низкой температуре, не видны, но обнаруживаются благодаря вызванным ими искажениям решётки (область искажений имеет вид кофейного зерна). Увеличено в 82 500 раз.

Рис. 4. Микроструктура сплава на основе молибдена, наблюдаемая с помощью электронного микроскопа; а - слабо деформированный сплав (видны дислокации в виде тёмных прерывистых линий). Увеличено в 50 000 раз; б - сильно деформированный сплав (видны фрагменты, разделённые плотными скоплениями дислокаций). Увеличено в 52 500 раз.

Увеличение скорости охлаждения может, напр., приводить к измельчению зерна. Размер зерна можно изменить, подвергнув металл пластич. деформации и рекристаллизации (рис. 2). Микроструктура резко изменяется при протекании в твёрдом металле фазовых превращений, к-рые могут быть вызваны изменением темп-ры или всестороннего давления. И в этом случае структура зависи/ от условий, в которых проходит превращение, гл. обр. от температурного интервала и скорости охлаждения, а также от особенностей строения кристаллич. решёток фаз, участвующих в превращении. Напр., размеры выделений второй фазы и расстояние между ними уменьшаются, если превращение проходит при низких темп-pax или ускоренном охлаждении (рис. 3). Субструктура металла изменяется при фазовых превращениях, а также при пластич. деформации и рекристаллизации. Напр., после сильной деформации дислокации могут образовать скопления, разделяющие зёрна на отдельные фрагменты (рис. 4). Помимо закономерностей образования структуры, М. изучает условия и причины возникновения при кристаллизации, пластич. деформации и рекристаллизации текстуры металлов, к-рая обусловливает анизотропию свойств поликри-сталлич. материала. (Историч. справку см. в ст. Металловедение.)

Лит.: Б о ч в а р А. А., Металловедение, 5 изд., М., 1956; Ю м - Р о з е р и В., Рей-нор Г. В., Структура металлов и сплавов, пер. с англ., М., 1959; Лаборатория металлографии, 2 изд., М., 1965; С мол мен Р., А ш о и К., Современная металлография, пер. с англ., М., 1970; Лившиц Б. Г., Металлография, 2 изд., М., 1971.

В. Ю. Новиков.

МЕТАЛЛОИДЫ (от металлы и греч. eidos - вид, облик, образ), 1) устаревшее название неметаллич. элементов, см. Неметаллы. 2) Иногда применяемое (в зарубежной и переводной лит-ре) общее название элементов В, Si, Ge, As, Sb, Те, Ро, к-рые по свойствам занимают промежуточное положение между металлами и неметаллами.

МЕТАЛЛОКЕРАМИЧЕСКИЕ ЛАМПЫ, электронные лампы (триоды и тетроды), вакуумплотная оболочка к-рых выполнена из металла и керамики. Применяются в радиотехнич. устройствах для генерирования и усиления колебаний как в непрерывном, так и в импульсном режимах работы в дециметровом и сантиметровом диапазонах волн. М. л. разработаны в кон. 30-х гг. 20 в. в Германии (фирма "Телефункен"). Оболочки М. л. изготавливают из форстеритовой керамики (2MgO- SiO2) и титана, к-рые имеют одинаковые коэфф. теплового расширения, или из алюмооксидной керамики (А12О3) и металла (обычно медь, медно-никелевый сплав, ковар, титан). Электроды в М. л. (рис. 1) соединены металлич. дисками с металлич. цилиндрами, к к-рым подсоединяется съёмная часть колебат. системы из отрезков коаксиальных линий. Применение керамики вместо стекла повысило точность установки и жёсткость крепления электродов, что позволило сократить расстояния между электродами, напр, до 15-20 мкм между катодом и управляющей сеткой, и, как следствие, уменьшить время пролёта электронов между электродами, увеличить предельное значение рабочей частоты. Большая термостойкость керамики и меньшие её диэлектрич. потери на СВЧ по сравнению со стеклом, а также хороший отвод тепла от электродов через металлич. диски, спаянные с керамикой, способствовали повышению мощности (рис. 2) и кпд М. л. Благодаря этим преимуществам металлокерамич. оболочки с 50-60-х гг. применяются также и в др. электровакуумных приборах, напр, клистронах, магнетронах, тиратронах.

Рис. 1. Металлокерамический триод типа ГС-4В: / - катод; 2 - управляющая сетка; 3 - анод; 4 - вывод анода; 5 - вывод управляющей сетки; 6- вывод катода; 7 - вывод подогревателя катода. Габариты: высота 31 мм, диаметр 23 мм.

Анодное напряжение 220 в, выходная мощность около 1 втп на частоте 4,2 Ггц.

Рис. 2. Зависимость предельных зна< чений выходной мощности металлокера-мических ламп от частоты в непрерывном режиме работы.

Лит.: Антипов Г. Я., Марта-ков Г. М., Генераторные металло-керамические лампы СВЧ диапазона, М., 1969. В. Ф. Коваленко.

МЕТАЛЛОМЕТРИЧЕСКАЯ СЪЁМКА, то же, что литохимическая съёмка.